Enhancing effect of MgO modification of Cu-Al spinel oxide catalyst for methanol steam reforming

被引:37
|
作者
Hou, Xiaoning [1 ,2 ]
Qing, Shaojun [1 ,2 ]
Liu, Yajie [3 ]
Li, Lindong [1 ]
Gao, Zhixian [1 ]
Qin, Yong [4 ]
机构
[1] Chinese Acad Sci, Inst Coal Chem, Taiyuan 030001, Peoples R China
[2] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[3] Jinzhong Univ, Coll Chem & Chem Engn, Jinzhong 030619, Peoples R China
[4] Chinese Acad Sci, Inst Coal Chem, State Key Lab Coal Convers, Taiyuan 030001, Peoples R China
基金
中国国家自然科学基金;
关键词
Cu-Al spinel; Sustained release catalysis; MgO modification; Strong interaction; Methanol steaming reforming; HYDROGEN-PRODUCTION; MGAL2O4; SURFACE; CU/ZNO/AL2O3; PERFORMANCE; REACTOR; SHIFT; SPECTROSCOPY; NI-CU/AL2O3; REDUCTION;
D O I
10.1016/j.ijhydene.2019.10.164
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Cu-Al spinel oxide (CA) as a sustained release catalyst has been successfully used in methanol steam reforming and it is highly required to improve its catalytic performance. Here, surface modification of the CA with various MgO loadings was performed. Characterization results showed that MgO dopant had strong interaction with the CA, resulting in a substantial change of the surface microstructure. Importantly, a small portion of lattice Cu2+ was phased out while partial me, cations incorporated into the spinel structure, giving rise to a variation of the cation distribution. Consequently, the change of the Cu2+ surrounding environment made it become hard to be reducible, thus the doped catalysts showed a lower copper releasing rate and smaller copper particles. Then, the activity and stability were enhanced when a suitable amount of MgO was highly dispersed. Excess amount of crystalline MgO gave rise to easy coking that resulted in an inferior catalytic performance. (C) 2019 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:477 / 489
页数:13
相关论文
共 50 条
  • [31] A unique microwave effect on the microstructural modification of Cu/ZnO/Al2O3 catalysts for steam reforming of methanol
    Zhang, XR
    Wang, LC
    Cao, Y
    Dai, WL
    He, HY
    Fan, KN
    CHEMICAL COMMUNICATIONS, 2005, (32) : 4104 - 4106
  • [32] AMORPHOUS STRUCTURE IN Cu-Zn-V-Al OXIDE COMPOSITE CATALYST FOR METHANOL REFORMING
    Mahmud, Mohd Sabri
    Yaakob, Zahira
    Mohamad, Abu Bakar
    Daud, Wan Ramli Wan
    Vo Nguyen Dai Viet
    IIUM ENGINEERING JOURNAL, 2018, 19 (01): : 197 - 214
  • [33] The role of urea in Cu–Zn–Al catalysts for methanol steam reforming
    Suparoek Henpraserttae
    Pimpa Limthongkul
    Pisanu Toochinda
    Monatshefte für Chemie - Chemical Monthly, 2010, 141 : 269 - 277
  • [34] Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol
    Didi Li
    Fang Xu
    Xuan Tang
    Sheng Dai
    Tiancheng Pu
    Xianglin Liu
    Pengfei Tian
    Fuzhen Xuan
    Zhi Xu
    Israel E. Wachs
    Minghui Zhu
    Nature Catalysis, 2022, 5 : 99 - 108
  • [35] Induced activation of the commercial Cu/ZnO/Al2O3 catalyst for the steam reforming of methanol
    Li, Didi
    Xu, Fang
    Tang, Xuan
    Dai, Sheng
    Pu, Tiancheng
    Liu, Xianglin
    Tian, Pengfei
    Xuan, Fuzhen
    Xu, Zhi
    Wachs, Israel E.
    Zhu, Minghui
    NATURE CATALYSIS, 2022, 5 (02) : 99 - 108
  • [36] The role of samarium on Cu/Al2O3 catalyst in the methanol steam reforming for hydrogen production
    Lei, Yanqiu
    Luo, Yongming
    Li, Xiaofeng
    Lu, Jichang
    Mei, Zhanqiang
    Peng, Wen
    Chen, Ran
    Chen, Kezhen
    Chen, Dingkai
    He, Dedong
    CATALYSIS TODAY, 2018, 307 : 162 - 168
  • [37] Methanol steam reforming for hydrogen production driven by an atomically precise Cu catalyst
    Weigang Hu
    Haoqi Liu
    Yuankun Zhang
    Jiawei Ji
    Guangjun Li
    Xiao Cai
    Xu Liu
    Wen Wu Xu
    Weiping Ding
    Yan Zhu
    GreenEnergy&Environment, 2024, 9 (07) : 1079 - 1084
  • [38] Dynamics of the Cu/CeO2 catalyst during methanol steam reforming
    Jin, Shiqing
    Li, Didi
    Wang, Zhen
    Wang, Yiming
    Sun, Li
    Zhu, Minghui
    CATALYSIS SCIENCE & TECHNOLOGY, 2022, 12 (23) : 7003 - 7009
  • [39] Methanol steam reforming for hydrogen production driven by an atomically precise Cu catalyst
    Hu, Weigang
    Liu, Haoqi
    Zhang, Yuankun
    Ji, Jiawei
    Li, Guangjun
    Cai, Xiao
    Liu, Xu
    Xu, Wen Wu
    Ding, Weiping
    Zhu, Yan
    GREEN ENERGY & ENVIRONMENT, 2024, 9 (07) : 1079 - 1084
  • [40] A novel structured PdZnAl/Cu fiber catalyst for methanol steam reforming in microreactor
    Tian, Jinshu
    Ke, Yuzhi
    Kong, Guoguo
    Tan, Mingwu
    Wang, Yong
    Lin, Jingdong
    Zhou, Wei
    Wan, Shaolong
    RENEWABLE ENERGY, 2017, 113 : 30 - 42