The Euler limit of the Navier-Stokes equations, and rotating fluids with boundary

被引:68
|
作者
Masmoudi, N [1 ]
机构
[1] Ecole Normale Super, Dept Math & Informat, F-75005 Paris, France
关键词
D O I
10.1007/s002050050097
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we study the convergence of weak solutions of the Navier-Stokes equations in some particular domains, with different horizontal and vertical viscosities, when they go to zero with different speeds. The difficulty here comes from the Dirichlet boundary conditions. Precisely we show that if the ratio of the vertical viscosity to the horizontal viscosity also goes to zero, then the solutions converge to the solution of the Euler system. We study the same limit for rotating fluids with Rossby number also going to zero.
引用
收藏
页码:375 / 394
页数:20
相关论文
共 50 条