On the Rotating Navier-Stokes Equations with Mixed Boundary Conditions

被引:0
|
作者
Kai Tai LI Rong AN College of Science
机构
关键词
rotating Navier-Stokes equations; mixed boundary conditions; Uzawa Algorithm; conjugate gradient algorithm; least-square method;
D O I
暂无
中图分类号
O175 [微分方程、积分方程];
学科分类号
070104 ;
摘要
The stationary and nonstationary rotating Navier-Stokes equations with mixed boundaryconditions are investigated in this paper.The existence and uniqueness of the solutions are obtainedby the Galerkin approximation method.Next,θ-scheme of operator splitting algorithm is appliedto rotating Navier-Stokes equations and two subproblems are derived.Finally,the computationalalgorithms for these subproblems are provided.
引用
收藏
页码:577 / 598
页数:22
相关论文
共 50 条
  • [1] On the rotating Navier-Stokes equations with mixed boundary conditions
    Kai Tai Li
    Rong An
    [J]. Acta Mathematica Sinica, English Series, 2008, 24 : 577 - 598
  • [2] On the rotating Navier-Stokes equations with mixed boundary conditions
    Li, Kai Tai
    An, Rong
    [J]. ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (04) : 577 - 598
  • [3] Stokes and Navier-Stokes equations with Navier boundary conditions
    Acevedo Tapia, P.
    Amrouche, C.
    Conca, C.
    Ghosh, A.
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 285 : 258 - 320
  • [4] BOUNDARY STABILIZATION OF THE NAVIER-STOKES EQUATIONS IN THE CASE OF MIXED BOUNDARY CONDITIONS
    Phuong Anh Nguyen
    Raymond, Jean-Pierre
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2015, 53 (05) : 3006 - 3039
  • [5] Local solutions to the Navier-Stokes equations with mixed boundary conditions
    Kucera, P
    Skalák, Z
    [J]. ACTA APPLICANDAE MATHEMATICAE, 1998, 54 (03) : 275 - 288
  • [6] Existence of optimal boundary control for the Navier-Stokes equations with mixed boundary conditions
    Guerra, Telma
    Sequeira, Adelia
    Tiago, Jorge
    [J]. PORTUGALIAE MATHEMATICA, 2015, 72 (2-3) : 267 - 283
  • [7] Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions
    Raymond, J. -P.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (06): : 921 - 951
  • [8] On the weak solutions to steady Navier-Stokes equations with mixed boundary conditions
    Hou, Yanren
    Pei, Shuaichao
    [J]. MATHEMATISCHE ZEITSCHRIFT, 2019, 291 (1-2) : 47 - 54
  • [9] Solution of the Navier-Stokes equations with mixed boundary conditions in bounded domain
    Kucera, P
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1997, 77 : S605 - S606
  • [10] On the weak solutions to steady Navier-Stokes equations with mixed boundary conditions
    Yanren Hou
    Shuaichao Pei
    [J]. Mathematische Zeitschrift, 2019, 291 : 47 - 54