Valence Effects of Fe Impurity for Recovered LiNi0.6Co0.2Mn0.2O2 Cathode Materials

被引:15
|
作者
Zhang, Ruihan [1 ]
Zheng, Yadong [1 ]
Vanaphuti, Panawan [1 ]
Liu, Yangtao [1 ]
Fu, Jinzhao [1 ]
Yao, Zeyi [1 ]
Ma, Xiaotu [1 ]
Chen, Mengyuan [1 ]
Yang, Zhenzhen [2 ]
Lin, Yulin [3 ]
Wen, Jianguo [3 ]
Wang, Yan [1 ]
机构
[1] Worcester Polytech Inst, Dept Mech Engn, Worcester, MA 01609 USA
[2] Argonne Natl Lab, Chem Sci & Engn Div, Lemont, IL 60439 USA
[3] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
关键词
recovered LiNi0.6Co0.2Mn0.2O2 (NCM622) cathode materials; iron impurities; spent LIB recycling process; cation mixing degree; XPS depth profiling technique; LITHIUM-ION BATTERY; ENHANCED ELECTROCHEMICAL PERFORMANCE; CYCLING STABILITY; XPS SPECTRA; METAL; ELECTROLYTE; BEHAVIOR; INTERFACE; CAPACITY; VOLTAGE;
D O I
10.1021/acsaem.1c02281
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Iron impurities are generally included in the obtained leaching liquor solution during the hydrometallurgical recycling method of spent lithium-ion batteries (LIBs) due to the usage of iron in battery casings and machinery parts of recycling equipment, which would definitely affect the physical and electrochemical features of the recovered active materials. In this work, the effects of iron impurity with different valence states (Fe2+ and Fe3+) and gradient concentrations (0.2, 1.0, and 5.0 at. %) for the obtained LiNi0.6Co0.2Mn0.2O2 (NCM622) cathodes are fully studied. It is found that Fe3+ impurity could easily lower the tap density and average size of NCM622 particles and even introduce some impurity phases in the NCM622 structure at high concentration (5.0 at. %), leading to much lower specific capacity, worse rate capability, and cycling performance of the Fe3+-based NCM622 cathode. On contrast, with certain concentrations of Fe2+ impurity (0.2 and 1.0 at. %), the NCM622 cathode material exhibits comparable and much better electrochemical properties compared with the virgin NCM622 materials. Based on these results, the valence of Fe impurity should be considered and controlled as well as its concentration during the recycling process design for spent LIBs.
引用
收藏
页码:10356 / 10367
页数:12
相关论文
共 50 条
  • [21] Plasma assisted synthesis of LiNi0.6Co0.2Mn0.2O2 cathode materials with good cyclic stability at subzero temperatures
    Meng, Fanbo
    Hu, Renzong
    Chen, Zhiwei
    Tan, Liang
    Lan, Xuexia
    Yuan, Bin
    JOURNAL OF ENERGY CHEMISTRY, 2021, 56 : 46 - 55
  • [22] Nb-Cl co-doping improved the electrochemical performance of LiNi0.6Co0.2Mn0.2O2 cathode materials
    Bin Pan
    Hailang Zhang
    Yuling Weng
    Ionics, 2023, 29 : 4495 - 4507
  • [23] Synthesis of LiNi0.6Co0.2Mn0.2O2 from mixed cathode materials of spent lithium-ion batteries
    Chu, Wei
    Zhang, YaLi
    Chen, Xia
    Huang, YaoGuo
    Cui, HongYou
    Wang, Ming
    Wang, Jing
    JOURNAL OF POWER SOURCES, 2020, 449
  • [24] Recycling and reutilization of LiNi0.6Co0.2Mn0.2O2 cathode materials from spent lithium-ion battery
    Zhu, Jiaxin
    Guo, Guanghui
    Wu, Jie
    Cheng, Xiangyu
    Cheng, Yukun
    IONICS, 2022, 28 (01) : 241 - 250
  • [25] Improved electrochemical performance at high rates of LiNi0.6Co0.2Mn0.2O2 cathode materials by pressure-treatment
    Wu, Lei
    Liu, Yan
    Zhang, Dengke
    Feng, Liwei
    Qin, Wenchao
    JOURNAL OF SOLID STATE CHEMISTRY, 2020, 289
  • [26] Atomic Layer Deposition of Ultrathin MgO Coating onto LiNi0.6Co0.2Mn0.2O2 ; [原子层沉积MgO薄膜改性LiNi0.6Co0.2Mn0.2O2 ]
    Kou H.-R.
    Li X.-F.
    Liu W.
    Shan H.
    Yan B.
    Ding S.-J.
    Dianzi Keji Daxue Xuebao/Journal of the University of Electronic Science and Technology of China, 2020, 49 (01): : 3 - 12
  • [27] Revisiting the initial irreversible capacity loss of LiNi0.6Co0.2Mn0.2O2 cathode material batteries
    Hu, Qiao
    Wu, Yanzhou
    Ren, Dongsheng
    Liao, Jiaying
    Song, Youzhi
    Liang, Hongmei
    Wang, Aiping
    He, Yufang
    Wang, Li
    Chen, Zonghai
    He, Xiangming
    ENERGY STORAGE MATERIALS, 2022, 50 : 373 - 379
  • [28] Enhanced Electrochemical Performance of LiNi0.6Co0.2Mn0.2O2 by Expanded Graphite
    Peng, Zhenfeng
    Tang, Wenjie
    Peng, Yujia
    Qiu, Yang
    Shuai, Hantao
    Wang, Guixin
    ENERGY TECHNOLOGY, 2019, 7 (11)
  • [29] Preparation and Electrochemical Performances of Ti Doped LiNi0.6Co0.2Mn0.2O2
    Xu, Yue-bin
    Zhong, Sheng-kui
    Zhang, Qian
    PROCEEDINGS OF THE 7TH NATIONAL CONFERENCE ON CHINESE FUNCTIONAL MATERIALS AND APPLICATIONS (2010), VOLS 1-3, 2010, : 1843 - +
  • [30] Single-crystal LiNi0.6Co0.2Mn0.2O2 as high performance cathode materials for Li-ion batteries
    Wu, Borong (wubr@bit.edu.cn), 1600, Elsevier Ltd (674):