Universality of electron mobility in LaAlO3/SrTiO3 and bulk SrTiO3

被引:14
|
作者
Trier, Felix [1 ,5 ]
Reich, K. V. [2 ,3 ]
Christensen, Dennis Valbjorn [1 ]
Zhang, Yu [1 ]
Tuller, Harry L. [4 ]
Chen, Yunzhong [1 ]
Shklovskii, B. I. [2 ]
Pryds, Nini [1 ]
机构
[1] Tech Univ Denmark, Dept Energy Convers & Storage, Riso Campus, DK-4000 Roskilde, Denmark
[2] Univ Minnesota, Fine Theoret Phys Inst, Minneapolis, MN 55455 USA
[3] Ioffe Inst, St Petersburg 194021, Russia
[4] MIT, Dept Mat Sci & Engn, Cambridge, MA 02139 USA
[5] Univ Paris Saclay, Univ Paris Sud, Thales, Unite Mixte Phys CNRS, F-91767 Palaiseau, France
基金
俄罗斯科学基金会; 美国国家科学基金会;
关键词
OXIDE INTERFACES; GASES; GROWTH; CHARGE;
D O I
10.1063/1.5001316
中图分类号
O59 [应用物理学];
学科分类号
摘要
Metallic LaAlO3/SrTiO3 (LAO/STO) interfaces attract enormous attention, but the relationship between the electron mobility and the sheet electron density, n(s), is poorly understood. Here, we derive a simple expression for the three-dimensional electron density near the interface, n(3D), as a function of n(s) and find that the mobility for LAO/STO-based interfaces depends on n(3D) in the same way as it does for bulk doped STO. It is known that undoped bulk STO is strongly compensated with N similar or equal to 5 x 10(18) cm(-3) background donors and acceptors. In intentionally doped bulk STO with a concentration of electrons n(3D) < N, background impurities determine the electron scattering. Thus, when n(3D) < N, it is natural to see in LAO/STO the same mobility as in the bulk. On the other hand, in the bulk samples with n(3D) > N, the mobility collapses because scattering happens on n(3D) intentionally introduced donors. For LAO/STO, the polar catastrophe which provides electrons is not supposed to provide an equal number of random donors and thus the mobility should be larger. The fact that the mobility is still the same implies that for the LAO/STO, the polar catastrophe model should be revisited. Published by AIP Publishing.
引用
收藏
页数:4
相关论文
共 50 条
  • [31] Impact of strain-field interference on the coexistence of electron and hole gases in SrTiO3/LaAlO3/SrTiO3
    Su, C-P
    Singh, A. Kr
    Wu, T-C
    Chen, M-C
    Lai, Y-C
    Lee, W-L
    Guo, G. Y.
    Chu, M-W
    PHYSICAL REVIEW MATERIALS, 2019, 3 (07)
  • [32] Disorder and localization at the LaAlO3/SrTiO3 heterointerface
    Wong, Franklin J.
    Chopdekar, Rajesh V.
    Suzuki, Yuri
    PHYSICAL REVIEW B, 2010, 82 (16):
  • [33] Evolution of the Interfacial Structure of LaAlO3 on SrTiO3
    Pauli, S. A.
    Leake, S. J.
    Delley, B.
    Bjoerck, M.
    Schneider, C. W.
    Schlepuetz, C. M.
    Martoccia, D.
    Paetel, S.
    Mannhart, J.
    Willmott, P. R.
    PHYSICAL REVIEW LETTERS, 2011, 106 (03)
  • [34] Charge Writing at the LaAlO3/SrTiO3 Surface
    Xie, Yanwu
    Bell, Christopher
    Yajima, Takeaki
    Hikita, Yasuyuki
    Hwang, Harold Y.
    NANO LETTERS, 2010, 10 (07) : 2588 - 2591
  • [35] Theory of spin-orbit coupling at LaAlO3/SrTiO3 interfaces and SrTiO3 surfaces
    Zhong, Zhicheng
    Toth, Anna
    Held, Karsten
    PHYSICAL REVIEW B, 2013, 87 (16)
  • [36] Anisotropic magnetotransport at the SrTiO3/LaAlO3 interface
    Ben Shalom, M.
    Tai, C. W.
    Lereah, Y.
    Sachs, M.
    Levy, E.
    Rakhmilevitch, D.
    Palevski, A.
    Dagan, Y.
    PHYSICAL REVIEW B, 2009, 80 (14):
  • [37] Resistance switching at the interface of LaAlO3/SrTiO3
    Chen, Y. Z.
    Zhao, J. L.
    Sun, J. R.
    Pryds, N.
    Shen, B. G.
    APPLIED PHYSICS LETTERS, 2010, 97 (12)
  • [38] Conducting channel at the LaAlO3/SrTiO3 interface
    Huang, Z.
    Wang, X. Renshaw
    Liu, Z. Q.
    Lu, W. M.
    Zeng, S. W.
    Annadi, A.
    Tan, W. L.
    Qiu, X. P.
    Zhao, Y. L.
    Salluzzo, M.
    Coey, J. M. D.
    Venkatesan, T.
    Ariando
    PHYSICAL REVIEW B, 2013, 88 (16)
  • [39] Antisymmetric magnetoresistance of the SrTiO3/LaAlO3 interface
    Seri, Snir
    Klein, Lior
    PHYSICAL REVIEW B, 2009, 80 (18):
  • [40] Anisotropic magnetotransport in LaAlO3/SrTiO3 nanostructures
    Prasad, Mithun S.
    Schmidt, Georg
    PHYSICAL REVIEW B, 2021, 104 (05)