Spin Nernst Effect of Antiferromagnetic Magnons in the Presence of Spin Diffusion

被引:3
|
作者
Zhang, Hantao [1 ]
Cheng, Ran [1 ,2 ]
机构
[1] Univ Calif Riverside, Dept Elect & Comp Engn, Riverside, CA 92521 USA
[2] Univ Calif Riverside, Dept Phys & Astron, Riverside, CA 92521 USA
关键词
D O I
10.1103/PhysRevApplied.16.034035
中图分类号
O59 [应用物理学];
学科分类号
摘要
The magnon spin Nernst effect was recently proposed as an intrinsic effect in antiferromagnets, where spin diffusion and boundary spin transmission have been ignored. However, diffusion processes are essential for converting a bulk spin current into boundary spin accumulation, which determines the spin injection rate into detectors through imperfect transmission. We formulate a diffusive theory to describe the detection of the magnon spin Nernst effect with boundary conditions reflecting real device geometry. Because of the spin diffusion effect, the output signals in both electronic and optical detection grow rapidly with increasing system size in the transverse dimension, which eventually saturate. Counterintuitively, the measurable signals are even functions of magnetic field, making optical detection more favorable than electronic detection.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Spin Hall Magnetoresistance and Spin Nernst Magnetothermopower in a Rashba System: Role of the Inverse Spin Galvanic Effect
    Toelle, Sebastian
    Dzierzawa, Michael
    Eckern, Ulrich
    Gorini, Cosimo
    [J]. ANNALEN DER PHYSIK, 2018, 530 (03)
  • [42] Emission of coherent THz magnons in an antiferromagnetic insulator triggered by ultrafast spin–phonon interactions
    E. Rongione
    O. Gueckstock
    M. Mattern
    O. Gomonay
    H. Meer
    C. Schmitt
    R. Ramos
    T. Kikkawa
    M. Mičica
    E. Saitoh
    J. Sinova
    H. Jaffrès
    J. Mangeney
    S. T. B. Goennenwein
    S. Geprägs
    T. Kampfrath
    M. Kläui
    M. Bargheer
    T. S. Seifert
    S. Dhillon
    R. Lebrun
    [J]. Nature Communications, 14
  • [43] MAGNONS AND SOLITONS IN A SPIN-1 ANTIFERROMAGNETIC HEISENBERG-ISING RING - COMMENT
    SOLYOM, J
    [J]. PHYSICAL REVIEW B, 1988, 38 (16): : 11920 - 11922
  • [44] Spin torque antiferromagnetic nanooscillator in the presence of magnetic noise
    Gomonay, H.
    Loktev, V.
    [J]. CONDENSED MATTER PHYSICS, 2012, 15 (04)
  • [45] SPIN WAVES IN AN ANTIFERROMAGNETIC METAL IN PRESENCE OF A MAGNETIC FIELD
    BLANK, AY
    KONDRATE.PS
    [J]. SOVIET PHYSICS JETP-USSR, 1969, 29 (02): : 311 - &
  • [46] Coexistence and Interaction of Spinons and Magnons in an Antiferromagnet with Alternating Antiferromagnetic and Ferromagnetic Quantum Spin Chains
    Zhang, H.
    Zhao, Z.
    Gautreau, D.
    Raczkowski, M.
    Saha, A.
    Garlea, V. O.
    Cao, H.
    Hong, T.
    Jeschke, H. O.
    Mahanti, Subhendra D.
    Birol, T.
    Assaad, F. F.
    Ke, X.
    [J]. PHYSICAL REVIEW LETTERS, 2020, 125 (03)
  • [47] Microscopic origin of subthermal magnons and the spin Seebeck effect
    Diniz, I.
    Costa, A. T.
    [J]. NEW JOURNAL OF PHYSICS, 2016, 18
  • [48] Spin current carried by magnons
    Wang, BG
    Wang, J
    Wang, J
    Xing, DY
    [J]. PHYSICAL REVIEW B, 2004, 69 (17) : 174403 - 1
  • [49] Spin Seebeck effect near the antiferromagnetic spin-flop transition
    Reitz, Derek
    Li, Junxue
    Yuan, Wei
    Shi, Jing
    Tserkovnyak, Yaroslav
    [J]. PHYSICAL REVIEW B, 2020, 102 (02)
  • [50] Impurity Spin Effect on the Spin-1 Antiferromagnetic Heisenberg Chain
    Kaburagi, Makoto
    Tonegawa, Takashi
    Kang, Min
    [J]. JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2003, 72