We explore the sparsity of Weyl-Titchmarsh m-functions of discrete Schrodinger operators. Due to this, the set of their m-functions cannot be dense on the set of those for Jacobi operators. All this reveals why an inverse spectral theory for discrete Schrodinger operators via their spectral measures should be difficult. To obtain the result, de Branges theory of canonical systems is applied to work on them, instead of Weyl-Titchmarsh m-functions. (C) 2017 Elsevier Inc. All rights reserved.
机构:
Univ Bordeaux 1, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, FranceUniv Bordeaux 1, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, France
Bonnefont, Michel
Golenia, Sylvain
论文数: 0引用数: 0
h-index: 0
机构:
Univ Bordeaux 1, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, FranceUniv Bordeaux 1, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, France
Golenia, Sylvain
Keller, Matthias
论文数: 0引用数: 0
h-index: 0
机构:
Univ Jena, Math Inst, D-07745 Jena, GermanyUniv Bordeaux 1, Inst Math Bordeaux, 351 Cours Liberat, F-33405 Talence, France
机构:
St Petersburg State Univ, Univ Skaya Nab 7-9, St Petersburg 199034, RussiaSt Petersburg State Univ, Univ Skaya Nab 7-9, St Petersburg 199034, Russia
Korotyaev, Evgeny
Saburova, Natalia
论文数: 0引用数: 0
h-index: 0
机构:
Northern Arctic Fed Univ, Severnaya Dvina Emb 17, Arkhangelsk 163002, RussiaSt Petersburg State Univ, Univ Skaya Nab 7-9, St Petersburg 199034, Russia