Distributed and Adaptive Fast Multipole Method in Three Dimensions

被引:0
|
作者
Bull, Jonathan [1 ]
Engblom, Stefan [1 ]
机构
[1] Uppsala Univ, Dept Informat Technol, Div Sci Comp, SE-75105 Uppsala, Sweden
基金
瑞典研究理事会;
关键词
Adaptive fast multipole method; distributed parallelization; Message Passing Inter-face (MPI); multipole acceptance criterion; balanced tree; ALGORITHM; PARTICLE; FMM;
D O I
10.4208/cicp.OA-2020-0072
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We develop a general distributed implementation of an adaptive fast multipole method in three space dimensions. We rely on a balanced type of adaptive space discretization which supports a highly transparent and fully distributed implementation. A complexity analysis indicates favorable scaling properties and numerical experiments on up to 512 cores and 1 billion source points verify them. The parameters controlling the algorithm are subject to in-depth experiments and the performance response to the input parameters implies that the overall implementation is well-suited to automated tuning.
引用
收藏
页码:959 / 984
页数:26
相关论文
共 50 条
  • [21] A RIGOROUS COMPARISON OF THE EWALD METHOD AND THE FAST MULTIPOLE METHOD IN 2 DIMENSIONS
    SOLVASON, D
    KOLAFA, J
    PETERSEN, HG
    PERRAM, JW
    [J]. COMPUTER PHYSICS COMMUNICATIONS, 1995, 87 (03) : 307 - 318
  • [22] OPTIMIZING THE ADAPTIVE FAST MULTIPOLE METHOD FOR FRACTAL SETS
    Pouransari, Hadi
    Darve, Eric
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2015, 37 (02): : A1040 - A1066
  • [23] An adaptation of the fast multipole method for evaluating layer potentials in two dimensions
    McKenney, A
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1996, 31 (01) : 33 - 57
  • [24] A fast multipole method for higher order vortex panels in two dimensions
    Ramachandran, P
    Rajan, SC
    Ramakrishna, M
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2005, 26 (05): : 1620 - 1642
  • [25] High performance BLAS formulation of the adaptive Fast Multipole Method
    Coulaud, O.
    Fortin, P.
    Roman, J.
    [J]. MATHEMATICAL AND COMPUTER MODELLING, 2010, 51 (3-4) : 177 - 188
  • [26] Preconditioned fast adaptive multipole boundary-element method
    Buchau, A
    Rucker, WM
    [J]. IEEE TRANSACTIONS ON MAGNETICS, 2002, 38 (02) : 461 - 464
  • [27] A New Adaptive Algorithm for the Fast Multipole Boundary Element Method
    Bapat, M. S.
    Liu, Y. J.
    [J]. CMES-COMPUTER MODELING IN ENGINEERING & SCIENCES, 2010, 58 (02): : 161 - 183
  • [28] A new adaptive algorithm for the fast multipole boundary element method
    Bapat, M.S.
    Liu, Y.J.
    [J]. CMES - Computer Modeling in Engineering and Sciences, 2010, 58 (02): : 161 - 183
  • [29] A Massively Parallel Adaptive Fast Multipole Method on Heterogeneous Architectures
    Lashuk, Ilya
    Chandramowlishwaran, Aparna
    Langston, Harper
    Tuan-Anh Nguyen
    Sampath, Rahul
    Shringarpure, Aashay
    Vuduc, Richard
    Ying, Lexing
    Zorin, Denis
    Biros, George
    [J]. COMMUNICATIONS OF THE ACM, 2012, 55 (05) : 101 - 109
  • [30] A massively parallel adaptive fast multipole method on heterogeneous architectures
    Institute for Scientific Computing Research, Lawrence Livermore National Laboratory, Livermore, CA, United States
    不详
    不详
    不详
    不详
    不详
    [J]. Commun ACM, 5 (101-109):