Laser-induced Superhydrophobic and Oleophobic Surface Structures on Float Glass

被引:0
|
作者
Jagdheesh, R. [1 ]
Bicistova, R. [1 ]
Brajer, J. [1 ]
Mocek, T. [1 ]
机构
[1] Czech Acad Sci, HiLASE Ctr, Inst Phys, Za Radnici 828, Dolni Brezany 25241, Czech Republic
关键词
Ultrafast laser; float glass; nanostructures; contact angle; superhydrophobic; oleophobic; self-cleaning; FEMTOSECOND LASER; WETTABILITY; RESISTANCE; ABLATION; DESIGN; STEEL;
D O I
暂无
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The non-linear energy deposition associated with ultrafast laser processing enables us to create sub-wavelength nanostructures on a variety of materials; therefore, ultrafast laser processing is proved to be a versatile tool for the generation of surface functionalities such as superhydrophobic and self-cleaning surfaces. Float glass is an important material used in automobile for the windshields and mirrors. Windshields with functional properties like self-cleaning without compromising the transparency and bulk material properties is a tough challenge. In this direction, a successful attempt has been made by creating laser-induced surface structures on the float glass surface without reducing the transparency by picosecond laser processing. The initiation and growth of laser-induced surface structures have been studied with respect to number of pulses applied to the spot and the variation of density of the nanostructures by a spatial shift of laser beam. The wetting property evaluation was found to be superhydrophobic and oleophobic.
引用
收藏
页码:289 / 298
页数:10
相关论文
共 50 条
  • [1] Transparent superhydrophobic glass prepared by laser-induced plasma-assisted ablation on the surface
    Zhao, Douyan
    Zhu, Hao
    Zhang, Zhaoyang
    Xu, Kun
    Lei, Weining
    Gao, Jian
    Liu, Yang
    JOURNAL OF MATERIALS SCIENCE, 2022, 57 (33) : 15679 - 15689
  • [2] Transparent superhydrophobic glass prepared by laser-induced plasma-assisted ablation on the surface
    Douyan Zhao
    Hao Zhu
    Zhaoyang Zhang
    Kun Xu
    Weining Lei
    Jian Gao
    Yang Liu
    Journal of Materials Science, 2022, 57 : 15679 - 15689
  • [3] Laser-Induced Nanoscale Superhydrophobic Structures on Metal Surfaces
    Jagdheesh, R.
    Pathiraj, B.
    Karatay, E.
    Roemer, G. R. B. E.
    in't Veldt, A. J. Huis
    LANGMUIR, 2011, 27 (13) : 8464 - 8469
  • [4] Mechanism of superhydrophilic to superhydrophobic transition of femtosecond laser-induced periodic surface structures on titanium
    Exir, Hourieh
    Weck, Arnaud
    SURFACE & COATINGS TECHNOLOGY, 2019, 378
  • [5] Surface functionalization by laser-induced periodic surface structures
    Florian, Camilo
    Kirner, Sabrina V.
    Krueger, Joerg
    Bonse, Joern
    JOURNAL OF LASER APPLICATIONS, 2020, 32 (02)
  • [6] Superhydrophobic/-philic SERS Platform Based on Femtosecond Laser-Induced Periodic Surface Structures and Ag Nanoparticles
    Zhou, Taohua
    Chen, Kun
    Cao, Kai
    Zhou, Xuran
    Yang, Zichen
    Cao, Jianjun
    Ma, Chaoqun
    Hu, Lian
    ACS APPLIED NANO MATERIALS, 2024, 7 (21) : 25014 - 25024
  • [7] Femtosecond laser-induced periodic surface structures
    Bonse, J.
    Krueger, J.
    Hoehm, S.
    Rosenfeld, A.
    JOURNAL OF LASER APPLICATIONS, 2012, 24 (04)
  • [8] Control of Laser-induced Periodic Surface Structures
    Uhlmann E.
    Schweitzer L.
    Schneider P.
    Michel A.
    Hein C.
    ZWF Zeitschrift fuer Wirtschaftlichen Fabrikbetrieb, 2021, 116 (10): : 685 - 688
  • [9] Superhydrophobic and Highly Oleophobic Nylon Surface
    Hao Wei
    Shao Zhengzhong
    ACTA CHIMICA SINICA, 2014, 72 (09) : 1023 - 1028
  • [10] The Role of the Laser-Induced Oxide Layer in the Formation of Laser-Induced Periodic Surface Structures
    Florian, Camilo
    Deziel, Jean-Luc
    Kirner, Sabrina V.
    Siegel, Jan
    Bonse, Joern
    NANOMATERIALS, 2020, 10 (01)