Quantum-critical Pairing with Varying Exponents

被引:46
|
作者
Moon, Eun-Gook [1 ]
Chubukov, Andrey [2 ]
机构
[1] Harvard Univ, Dept Phys, Cambridge, MA 02138 USA
[2] Univ Wisconsin, Dept Phys, Madison, WI 53706 USA
关键词
Quantum phase transitions; Superconductivity; Non-Fermi liquid; T-J MODEL; DIMENSIONAL FERMI-SURFACE; SPIN-WAVE EXCHANGE; TRANSITION-TEMPERATURE; GAUGE FIELD; SUPERCONDUCTIVITY; INSTABILITY; GAS;
D O I
10.1007/s10909-010-0199-y
中图分类号
O59 [应用物理学];
学科分类号
摘要
We analyze the onset temperature T-p for the pairing in cuprate superconductors at small doping, when tendency towards antiferromagnetism is strong. We consider the model of Moon and Sachdev (MS), which assumes that electron and hole pockets survive in a paramagnetic phase. Within this model, the pairing between fermions is mediated by a gauge boson, whose propagator remains massless in a paramagnet. We relate the MS model to a generic gamma-model of quantum-critical pairing with the pairing kernel lambda(Omega(n)) proportional to 1/Omega(gamma)(n). We show that, over some range of parameters, the MS model is equivalent to gamma=1/3-model (lambda(Omega)proportional to Omega(-1/3)). We find, however, that the parameter range where this analogy works is bounded on both ends. At larger deviations from a magnetic phase, the MS model becomes equivalent to gamma model with varying gamma > 1/3, whose value depends on the distance to a magnetic transition and approaches gamma=1 deep in a paramagnetic phase. Very near the transition, the MS model becomes equivalent to gamma model with varying gamma < 1/3. Right at the magnetic QCP, the MS model is equivalent to the model with lambda(Omega (n))proportional to log Omega(n) , which is the model for color superconductivity. Using this analogy, we verify the formula for T-c derived for color superconductivity.
引用
收藏
页码:263 / 281
页数:19
相关论文
共 50 条
  • [21] Continuously varying critical exponents in long-range quantum spin ladders
    Adelhardt, Patrick
    Schmidt, Kai P.
    SCIPOST PHYSICS, 2023, 15 (03):
  • [22] Multiple intertwined pairing states and temperature-sensitive gap anisotropy for superconductivity at a nematic quantum-critical point
    Avraham Klein
    Yi-Ming Wu
    Andrey V. Chubukov
    npj Quantum Materials, 4
  • [23] Quantum-critical scale invariance in a transition metal alloy
    Nakajima, Yasuyuki
    Metz, Tristin
    Eckberg, Christopher
    Kirshenbaum, Kevin
    Hughes, Alex
    Wang, Renxiong
    Wang, Limin
    Saha, Shanta R.
    Liu, I-Lin
    Butch, Nicholas P.
    Campbell, Daniel
    Eo, Yun Suk
    Graf, David
    Liu, Zhonghao
    Borisenko, Sergey V.
    Zavalij, Peter Y.
    Paglione, Johnpierre
    COMMUNICATIONS PHYSICS, 2020, 3 (01)
  • [24] Gradient terms in quantum-critical theories of itinerant fermions
    Maslov, Dmitrii L.
    Sharma, Prachi
    Torbunov, Dmitrii
    Chubukov, Andrey V.
    PHYSICAL REVIEW B, 2017, 96 (08)
  • [25] Quantum critical Hall exponents
    Luetken, C. A.
    Ross, G. G.
    PHYSICS LETTERS A, 2014, 378 (03) : 262 - 265
  • [26] Quantum computing critical exponents
    Dreyer, Henrik
    Bejan, Mircea
    Granet, Etienne
    PHYSICAL REVIEW A, 2021, 104 (06)
  • [27] Origin of the quantum-critical transition in the bilayer Heisenberg model
    vanDuin, CNA
    Zaanen, J
    PHYSICAL REVIEW LETTERS, 1997, 78 (15) : 3019 - 3022
  • [28] Quantum-Critical Resistivity of Strange Metals in a Magnetic Field
    Varma, Chandra M.
    PHYSICAL REVIEW LETTERS, 2022, 128 (20)
  • [29] CRITICAL EXPONENTS FOR ANISOTROPIC SUPERCONDUCTORS WITH NONTRIVIAL PAIRING MODES
    ANTONENKO, SA
    SOKOLOV, AI
    SHALAYEV, BN
    FIZIKA NIZKIKH TEMPERATUR, 1991, 17 (09): : 1149 - 1151
  • [30] Quantum-critical scale invariance in a transition metal alloy
    Yasuyuki Nakajima
    Tristin Metz
    Christopher Eckberg
    Kevin Kirshenbaum
    Alex Hughes
    Renxiong Wang
    Limin Wang
    Shanta R. Saha
    I-Lin Liu
    Nicholas P. Butch
    Daniel Campbell
    Yun Suk Eo
    David Graf
    Zhonghao Liu
    Sergey V. Borisenko
    Peter Y. Zavalij
    Johnpierre Paglione
    Communications Physics, 3