Ectopic Overexpression of Maize Heat Stress Transcription Factor ZmHsf05 Confers Drought Tolerance in Transgenic Rice

被引:11
|
作者
Si, Weina [1 ]
Liang, Qizhi [1 ,2 ]
Chen, Li [1 ]
Song, Feiyang [1 ]
Chen, You [1 ]
Jiang, Haiyang [1 ]
机构
[1] Anhui Agr Univ, Sch Life Sci, Natl Engn Lab Crop Stress Resistance Breeding, Hefei 230036, Peoples R China
[2] Nanjing Univ, Sch Life Sci, State Key Lab Pharmaceut Biotechnol, Nanjing 210093, Peoples R China
基金
中国国家自然科学基金;
关键词
ZmHsf05; maize; drought; rice; abscisic acid; ENHANCES DROUGHT; ACTIVATOR FUNCTION; STOMATAL DENSITY; ABSCISIC-ACID; SALT STRESS; WATER; ABA; ARABIDOPSIS; GENE; EXPRESSION;
D O I
10.3390/genes12101568
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Drought is a key factor affecting plant growth and development. Heat shock transcription factors (Hsfs) have been reported to respond to diverse abiotic stresses, including drought stress. In the present study, functional characterization of maize heat shock transcription factor 05 (ZmHsf05) gene was conducted. Homologous analysis showed that ZmHsf05 belongs to Class A2 Hsfs. The mRNA expression level of ZmHsf05 can be affected by drought, high temperature, salt, and abscisic acid (ABA) treatment. Ectopic overexpression of ZmHsf05 in rice (Oryza sativa) could significantly enhance the drought tolerance. Faced with drought stress, transgenic rice exhibited better phenotypic performance, higher survival rate, higher proline content, and lower leaf water loss rate, compared with wild-type plant Zhonghua11. Additionally, we assessed the agronomic traits of seven transgenic rice lines overexpressing ZmHsf05 and found that ZmHsf05 altered agronomical traits in the field trials. Moreover, rice overexpressing ZmHsf05 was more sensitive to ABA and had either a lower germination rate or shorter shoot length under ABA treatment. The transcription level of key genes in the ABA synthesis and drought-related pathway were significantly improved in transgenic rice after drought stress. Collectively, our results showed that ZmHsf05 could improve drought tolerance in rice, likely in an ABA-dependent manner.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Ectopic overexpression of maize heat shock transcription factor gene ZmHsf04 confers increased thermo and salt-stress tolerance in transgenic Arabidopsis
    Jiang, Yingli
    Zheng, Qianqian
    Chen, Long
    Liang, Yani
    Wu, Jiandong
    [J]. ACTA PHYSIOLOGIAE PLANTARUM, 2018, 40 (01)
  • [2] Ectopic overexpression of maize heat shock transcription factor gene ZmHsf04 confers increased thermo and salt-stress tolerance in transgenic Arabidopsis
    Yingli Jiang
    Qianqian Zheng
    Long Chen
    Yani Liang
    Jiandong Wu
    [J]. Acta Physiologiae Plantarum, 2018, 40
  • [3] Overexpression of Arabidopsis and Rice stress genes' inducible transcription factor confers drought and salinity tolerance to rice
    Datta, Karabi
    Baisakh, Niranjan
    Ganguly, Moumita
    Krishnan, Sellapan
    Shinozaki, Kazuko Yamaguchi
    Datta, Swapan K.
    [J]. PLANT BIOTECHNOLOGY JOURNAL, 2012, 10 (05) : 579 - 586
  • [4] Expression of maize heat shock transcription factor gene ZmHsf06 enhances the thermotolerance and drought-stress tolerance of transgenic Arabidopsis
    Li, Hui-cong
    Zhang, Hua-ning
    Li, Guo-liang
    Liu, Zi-hui
    Zhang, Yan-min
    Zhang, Hong-mei
    Guo, Xiu-lin
    [J]. FUNCTIONAL PLANT BIOLOGY, 2015, 42 (11) : 1080 - 1091
  • [5] Maize WRKY Transcription Factor ZmWRKY106 Confers Drought and Heat Tolerance in Transgenic Plants
    Wang, Chang-Tao
    Ru, Jing-Na
    Liu, Yong-Wei
    Li, Meng
    Zhao, Dan
    Yang, Jun-Feng
    Fu, Jin-Dong
    Xu, Zhao-Shi
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (10)
  • [6] Overexpression of a NF-YC transcription factor from bermudagrass confers tolerance to drought and salinity in transgenic rice
    Chen, Miao
    Zhao, Yujuan
    Zhuo, Chunliu
    Lu, Shaoyun
    Guo, Zhenfei
    [J]. PLANT BIOTECHNOLOGY JOURNAL, 2015, 13 (04) : 482 - 491
  • [7] A maize heat shock factor ZmHsf11 negatively regulates heat stress tolerance in transgenic plants
    Qin, Qianqian
    Zhao, Yujun
    Zhang, Jiajun
    Chen, Li
    Si, Weina
    Jiang, Haiyang
    [J]. BMC PLANT BIOLOGY, 2022, 22 (01)
  • [8] A maize heat shock factor ZmHsf11 negatively regulates heat stress tolerance in transgenic plants
    Qianqian Qin
    Yujun Zhao
    Jiajun Zhang
    Li Chen
    Weina Si
    Haiyang Jiang
    [J]. BMC Plant Biology, 22
  • [9] Maize Transcription Factor ZmHsf28 Positively Regulates Plant Drought Tolerance
    Liu, Lijun
    Zhang, Yuhan
    Tang, Chen
    Shen, Qinqin
    Fu, Jingye
    Wang, Qiang
    [J]. INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (09)
  • [10] ZmNAC074, a maize stress-responsive NAC transcription factor, confers heat stress tolerance in transgenic Arabidopsis
    Xi, Yan
    Ling, Qiqi
    Zhou, Yue
    Liu, Xiang
    Qian, Yexiong
    [J]. FRONTIERS IN PLANT SCIENCE, 2022, 13