Evaluation of the osteogenic potential of crocin-incorporated collagen scaffold on the bone marrow mesenchymal stem cells

被引:0
|
作者
Mirshahi, Mahshid [1 ]
Farzad, Sara Amel [2 ]
Peyvandi, Mohammadtaghi [3 ]
Hahsemi, Maryam [4 ,5 ]
Kalalinia, Fatemeh [1 ,5 ]
机构
[1] Mashhad Univ Med Sci, Biotechnol Res Ctr, Pharmaceut Technol Inst, Mashhad, Razavi Khorasan, Iran
[2] Mashhad Univ Med Sci, Pharmaceut Res Ctr, Pharmaceut Technol Inst, Mashhad, Razavi Khorasan, Iran
[3] Mashhad Univ Med Sci, Shahid Kamyab Hosp, Orthoped Res Ctr, Mashhad, Razavi Khorasan, Iran
[4] Mashhad Univ Med Sci, Nanotechnol Res Ctr, Pharmaceut Technol Inst, Mashhad, Razavi Khorasan, Iran
[5] Mashhad Univ Med Sci, Sch Pharm, Dept Pharmaceut Biotechnol, Mashhad, Razavi Khorasan, Iran
关键词
Crocin; collagen scaffold; mesenchymal stem cell; osteogenic differentiation; bone defects; ALVEOLAR CLEFT; TISSUE; CYTOCOMPATIBILITY; DIFFERENTIATION; REGENERATION; COMPOSITE;
D O I
10.1080/03639045.2021.2001487
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Objective The present study aimed to evaluate the effect of crocin (CRO)-loaded collagen (COL) scaffold on the osteogenic differentiation of rat bone marrow-derived mesenchymal stem cells (BM-MSCs). Significance Different studies have been conducted to develop an efficient strategy to accelerate and improve the recovery process of bone defects. It was shown that CRO, extracted from saffron, could induce osteogenic differentiation of rat BM-MSCs. Scaffolds can also provide a three-dimensional environment for migration, adhesion, growth, and proliferation of MSCs. Methods Collagen scaffolds were fabricated through freeze-drying followed by cross-linking by dehydrothermal method. Then, CRO was incorporated into the scaffolds. Physicochemical characterization of the scaffolds was evaluated. Rat BM-MSCs were seeded on CRO-loaded COL scaffolds and cultured for 14 days. Osteogenic differentiation was evaluated using alizarin red (ALZ) staining and alkaline phosphatase (ALP) activity assay and compared to the positive control group. Results The average pore size of the COL scaffolds was about 97 +/- 6.7 mu m. Formation of amide cross-links was confirmed by FTIR. The scaffolds were capable of uptaking water up to 50 times more than their initial dry weight and releasing above 90% of their uploaded CRO during 24 h. Collagen scaffolds containing CRO (25 and 50 mu M) increased ALZ intensity (3.16 +/- 0.3 and 7.32 +/- 0.3 folds, respectively) and ALP activity (13.7 +/- 1.1 and 12.2 +/- 9.4 folds, respectively) in comparison with the positive control group. Conclusion Crocin-loaded COL scaffold could effectively enhance calcium deposition and ALP activity in BM-MSCs and therefore proposed as a good candidate to accelerate the healing process of vital bone defects.
引用
收藏
页码:1439 / 1446
页数:8
相关论文
共 50 条
  • [31] β-ecdysone promotes osteogenic differentiation of bone marrow mesenchymal stem cells
    You, Wei-Li
    Xu, Zheng-Long
    JOURNAL OF GENE MEDICINE, 2020, 22 (09):
  • [32] The Role of lncRNAs in Osteogenic Differentiation of Bone Marrow Mesenchymal Stem Cells
    Wang, Jicheng
    Liu, Shizhang
    Shi, Jiyuan
    Liu, Huitong
    Li, Jingyuan
    Zhao, Song
    Yi, Zhi
    CURRENT STEM CELL RESEARCH & THERAPY, 2020, 15 (03) : 243 - 249
  • [33] Role of nanoparticles in osteogenic differentiation of bone marrow mesenchymal stem cells
    Nadia S. Mahmoud
    Hanaa H. Ahmed
    Mohamed R. Mohamed
    Khalda S. Amr
    Hadeer A. Aglan
    Mohamed A. M. Ali
    Mohamed A. Tantawy
    Cytotechnology, 2020, 72 : 1 - 22
  • [34] Effect of Internal Structure of Collagen/Hydroxyapatite Scaffold on the Osteogenic Differentiation of Mesenchymal Stem Cells
    Chen, Guobao
    Lv, Yonggang
    Dong, Chanjuan
    Yang, Li
    CURRENT STEM CELL RESEARCH & THERAPY, 2015, 10 (02) : 99 - 108
  • [35] Odontogenic potential of bone marrow mesenchymal stem cells
    Li, Zhi-Yong
    Chen, Ling
    Liu, Lei
    Lin, Yun-Feng
    Li, Sheng-Wei
    Tian, Wei-Dong
    JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, 2007, 65 (03) : 494 - 500
  • [36] Evaluation of the Application Value of Bone Marrow Mesenchymal Stem Cells Osteogenic Differentiation in New Materials for Bone Regeneration
    Xing, Shuai
    Yang, Yong
    Wang, Yonggang
    Hu, Xuchang
    Ma, Bing
    Kang, Xuewen
    INDIAN JOURNAL OF PHARMACEUTICAL SCIENCES, 2020, 82 : 31 - 38
  • [37] Scrophularia striata extract incorporated nanofibrous scaffold improved osteogenic differentiation of mesenchymal stem cells
    Abazari, Mohammad Foad
    Karizi, Shohreh Zare
    Haghani-Samani, Elaheh
    Abazari, Danya
    Zaki-Dizaji, Majid
    Enderami, Seyed Ehsan
    Young, Penelope Anne
    Le Gratiet, Keyrian L.
    Tackallou, Saeed Hesami
    Aghapur, Nazli
    Mansouri, Vahid
    JOURNAL OF DRUG DELIVERY SCIENCE AND TECHNOLOGY, 2023, 89
  • [38] Effect of Osteoking on the osteogenic and adipogenic differentiation potential of rat bone marrow mesenchymal stem cells in vitro
    Yu, Congtao
    Dai, Lifen
    Ma, Zhaoxia
    Zhao, Hongbin
    Yuan, Yong
    Zhang, Yunfeng
    Bao, Pengfei
    Su, Yanfang
    Ma, Daiping
    Liu, Change
    Wu, Xingfei
    Liu, Jinxue
    Li, Yanjiao
    Wang, Bing
    Hu, Min
    BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE, 2019, 19 (1):
  • [39] Comparison of the osteogenic potential of mesenchymal stem cells from the bone marrow and adipose tissue of young dogs
    Alves, Endrigo G. L.
    Serakides, Rogeria
    Boeloni, Jankerle N.
    Rosado, Isabel R.
    Ocarino, Natalia M.
    Oliveira, Humberto P.
    Goes, Alfredo M.
    Rezende, Cleuza M. F.
    BMC VETERINARY RESEARCH, 2014, 10
  • [40] Effect of Osteoking on the osteogenic and adipogenic differentiation potential of rat bone marrow mesenchymal stem cells in vitro
    Congtao Yu
    Lifen Dai
    Zhaoxia Ma
    Hongbin Zhao
    Yong Yuan
    Yunfeng Zhang
    Pengfei Bao
    Yanfang Su
    Daiping Ma
    Change Liu
    Xingfei Wu
    Jinxue Liu
    Yanjiao Li
    Bing Wang
    Min Hu
    BMC Complementary and Alternative Medicine, 19