Hybrid machine learning in electrical impedance tomography

被引:0
|
作者
Rymarczyk, Tomasz [1 ,2 ,4 ]
Klosowski, Grzegorz [3 ]
Guzik, Miroslaw [1 ,4 ]
Niderla, Konrad [1 ,5 ]
Lipski, Jerzy [3 ]
机构
[1] Univ Econ & Innovat Lublin, Lublin, Poland
[2] Res & Dev Ctr Netrix SA, Lublin, Poland
[3] Lublin Univ Technol, Nadbystrzycka 38A, Lublin, Poland
[4] Univ Econ & Innovat, Projektowa 4, Lublin, Poland
[5] Lublin Univ Econ & Innovat, Projektowa 4, Lublin, Poland
来源
PRZEGLAD ELEKTROTECHNICZNY | 2021年 / 97卷 / 12期
关键词
electrical tomography; machine learning; industrial tomography;
D O I
10.15199/48.2021.12.35
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Artificial intelligence plays an increasingly important role in industrial tomography. In industry, various types of tomography can be used, where one of the criteria for classification may be a physical phenomenon. Thus, it is possible to distinguish computed tomography, impedance tomography, ultrasound tomography, capacitance tomography, radio-tomographic imaging, and others. The research described in this paper focuses on the EIT method used to imaging reactors' interior and industrial vessels. Inside the tested reactor, there may be a liquid of various densities containing solid inclusions or gas bubbles. The presented research presents the concept of transforming measurements into tomographic images using many known, homogeneous methods simultaneously. It is assumed that there is no single method of solving the inverse problem for all possible measurement cases. Depending on the specifics of the studied case, various methods generate reconstructions that differ in terms of accuracy and resolution. The presented research proves that the proposed approach justifies the increase in computational complexity, ensuring higher quality of tomographic images.
引用
收藏
页码:169 / 172
页数:4
相关论文
共 50 条
  • [41] LEARNING SPARSIFYING TRANSFORMS FOR IMAGE RECONSTRUCTION IN ELECTRICAL IMPEDANCE TOMOGRAPHY
    Yang, Kaiyi
    Borijindargoon, Narong
    Ng, Boon Poh
    Ravishankar, Saiprasad
    Wen, Bihan
    2021 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP 2021), 2021, : 1405 - 1409
  • [42] Bioimpedance tomography (Electrical impedance tomography)
    Bayford, R. H.
    ANNUAL REVIEW OF BIOMEDICAL ENGINEERING, 2006, 8 : 63 - 91
  • [43] Reconstructing images in electrical impedance tomography using hybrid genetic algorithms
    Mendoza, Renier G.
    Lope, Jose Ernie C.
    SCIENCE DILIMAN, 2012, 24 (02) : 50 - 66
  • [44] A Hybrid Segmentation and D-Bar Method for Electrical Impedance Tomography
    Hamilton, S. J.
    Reyes, J. M.
    Siltanen, S.
    Zhang, X.
    SIAM JOURNAL ON IMAGING SCIENCES, 2016, 9 (02): : 770 - 793
  • [45] Hybrid sensitivity-correlation regularisation matrix for electrical impedance tomography
    Borijindargoon, Narong
    Ng, Boon Poh
    IET SCIENCE MEASUREMENT & TECHNOLOGY, 2019, 13 (08) : 1092 - 1101
  • [46] Electrical Impedance Tomography Reconstruction using Hybrid Variation Regularization Algorithm
    Zhang, Shuai
    Guo, Yunge
    Zhang, Xueying
    Xu, Guizhi
    2016 IEEE CONFERENCE ON ELECTROMAGNETIC FIELD COMPUTATION (CEFC), 2016,
  • [47] Adipose Tissue Characterization With Electrical Impedance Spectroscopy and Machine Learning
    Dapsance, Florian
    Hou, Jie
    Dufour, Damien
    Boccara, Charlotte
    Briand, Nolwenn
    Martinsen, Orjan Grottem
    IEEE SENSORS LETTERS, 2023, 7 (10)
  • [48] 3D CELL CULTURE IMAGING USING HYBRID LEARNING ASSISTED MINIATURE ELECTRICAL IMPEDANCE TOMOGRAPHY
    Chen, Zhou
    Yang, Yunjie
    Bagnaninchi, Pierre
    TISSUE ENGINEERING PART A, 2022, 28 : S255 - S255
  • [49] Multi-frequency Electrical Impedance Tomography and Magnetic Resonance Electrical Impedance Tomography
    Seo, Jin Keun
    Woo, Eung Je
    MATHEMATICAL MODELING IN BIOMEDICAL IMAGING I: ELECTRICAL AND ULTRASOUND TOMOGRAPHIES, ANOMALY DETECTION, AND BRAIN IMAGING, 2009, 1983 : 1 - 71
  • [50] Practical Application of Electrical Impedance Tomography and Electrical Resistive Tomography
    Kriz, T.
    Roubal, Z.
    2016 PROGRESS IN ELECTROMAGNETICS RESEARCH SYMPOSIUM (PIERS), 2016, : 1499 - 1503