Design, fabrication and implementation of a high-performance compliant nanopositioner via 3D printing with continuous fiber-reinforced composite

被引:4
|
作者
Cui, Mengjia [1 ,2 ]
Shang, Erwei [3 ]
Jiang, Shouqian [3 ]
Liu, Yu [3 ]
Zhang, Zhen [1 ,2 ,4 ]
机构
[1] Tsinghua Univ, Dept Mech Engn, State Key Lab Tribol, Beijing 100084, Peoples R China
[2] Tsinghua Univ, Dept Mech Engn, Inst Mfg Engn, Beijing 100084, Peoples R China
[3] Jiangnan Univ, Sch Mech Engn, Wuxi 214122, Jiangsu, Peoples R China
[4] Tsinghua Univ, Beijing Key Lab Precis Ultraprecis Mfg Equipments, Beijing 100084, Peoples R China
基金
中国国家自然科学基金;
关键词
continuous fiber-reinforced composite; 3D printing; compliant mechanism; nanopositioning; MICROSCOPY;
D O I
10.1088/1361-6439/ac331b
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Nanopositioning systems have been widely applied in scientific and emerging industrial applications. With simplicity in design and operation, flexure bearings with spatial constraints and voice coil based nano-actuators are considered in designing compliant compact nanopositioning systems. To achieve nano-metric positioning quality, monolithic fabrication of the positioner is preferred, which calls for 3D printing fabrication. However, conventional plastic material-based 3D printing suffers from low mechanical performances, and it is challenging to monolithically fabricate 3D compliant mechanisms with high mechanical performances. Here, we study the fabrication of continuous carbon fiber reinforced composites by 3D printing of the double parallelogram flexure beam structures for spatial constrained nanopositioner with enhanced vertical stiffness. Also, with the consideration of the beam structure design, the process parameters for embedding the carbon fibers are optimized to enhance the beam strengths. Experimental results demonstrate a significant performance improvement with the composite based nanopositioner in both stiffness and natural frequency, and its positioning resolution of 30 nm is achieved. The result of this study will serve as the building block to apply advanced 3D printing of composite structure for precision engineering in the presence of more complex spatial structures.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Research Status of and Prospects for 3D Printing for Continuous Fiber-Reinforced Thermoplastic Composites
    Yang, Yuan
    Yang, Bo
    Chang, Zhengping
    Duan, Jihao
    Chen, Weihua
    POLYMERS, 2023, 15 (17)
  • [22] Warping estimation of continuous fiber-reinforced composites made by robotic 3D printing
    Ghnatios, Chady
    Fayazbakhsh, Kazem
    ADDITIVE MANUFACTURING, 2022, 55
  • [23] Carbon Fiber-Reinforced PLA Composite for Fused Deposition Modeling 3D Printing
    Wang, Andong
    Tang, Xinting
    Zeng, Yongxian
    Zou, Lei
    Bai, Fan
    Chen, Caifeng
    POLYMERS, 2024, 16 (15)
  • [24] Parameter design of continuous carbon fiber-reinforced phenolic resin composites via in situ-curing 3D printing technology
    Dong, Wencai
    Bao, Chonggao
    Liu, Rongzhen
    Li, Shijia
    JOURNAL OF REINFORCED PLASTICS AND COMPOSITES, 2024,
  • [25] 3D printing for continuous fiber reinforced thermoplastic composites: mechanism and performance
    Yang, Chuncheng
    Tian, Xiaoyong
    Liu, Tengfei
    Cao, Yi
    Li, Dichen
    RAPID PROTOTYPING JOURNAL, 2017, 23 (01) : 209 - 215
  • [26] Compressive performance of PVA fiber-reinforced 3D concrete printing permanent formwork composite columns reinforced with BFRP bars
    Liu, Bing
    Cheng, Xiao-Ming
    Wang, Lian-Gang
    Qian, Kai
    Journal of Building Engineering, 2024, 98
  • [27] A Novel Approach for 3D Printing Fiber-Reinforced Mortars
    Ungureanu, Dragos
    Onutu, Catalin
    Isopescu, Dorina Nicolina
    Taranu, Nicolae
    Zghibarcea, Stefan Vladimir
    Spiridon, Ionut Alexandru
    Polcovnicu, Razvan Andrei
    MATERIALS, 2023, 16 (13)
  • [28] The Road to Improved Fiber-Reinforced 3D Printing Technology
    Kabir, S. M. Fijul
    Mathur, Kavita
    Seyam, Abdel-Fattah M.
    TECHNOLOGIES, 2020, 8 (04)
  • [29] Bionic Design and 3D Printing of Continuous Carbon Fiber-Reinforced Polylactic Acid Composite with Barbicel Structure of Eagle-Owl Feather
    Liang, Yunhong
    Liu, Chang
    Zhao, Qian
    Lin, Zhaohua
    Han, Zhiwu
    Ren, Luquan
    MATERIALS, 2021, 14 (13)
  • [30] Integration 3D printing of bionic continuous carbon fiber reinforced resin composite
    Zhao, Qian
    Liu, Chang
    Liang, Yunhong
    Lin, Zhaohua
    Han, Zhiwu
    Ren, Lei
    MATERIALS RESEARCH EXPRESS, 2021, 8 (09)