Intermittent dynamics of bubble dissolution due to interfacial growth of fat crystals

被引:2
|
作者
Liascukiene, Irma [1 ]
Amselem, Gabriel [1 ]
Landoulsi, Jessem [2 ]
Gunes, Deniz Z. [3 ]
Baroud, Charles N. [1 ,4 ]
机构
[1] Ecole Polytech, Inst Polytech Paris, CNRS, LadHyX, F-91120 Palaiseau, France
[2] Sorbonne Univ, Lab Reactivite Surface, LRS, CNRS, F-75005 Paris, France
[3] Nestle Res Ctr, Food Sci & Technol Dept, CH-1000 Lausanne 26, Switzerland
[4] Inst Pasteur, Dept Genomes & Genet, Phys Microfluid & Bioengn, F-75015 Paris, France
关键词
INFRARED-SPECTRA; VEGETABLE-OILS; FT-IR; FOAMS; STABILIZATION; SPECTROSCOPY; POLYMORPHISM; SURFACTANT; DRAINAGE; WATER;
D O I
10.1039/d1sm00902h
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Foams are inherently unstable objects, that age and disappear over time. The main cause of foam aging is Ostwald ripening: smaller air bubbles within the foam empty their gas content into larger ones. One strategy to counter Ostwald ripening consists in creating armored bubbles, where solid particles adsorbed at the air/liquid interface prevent bubbles from shrinking below a given size. Here, we study the efficiency of coating air bubbles with fat crystals to prevent bubble dissolution. A monoglyceride, monostearin, is directly crystallized at the air/oil interface. Experiments on single bubbles in a microfluidic device show that the presence of monostearin fat crystals slows down dissolution, with an efficiency that depends on the crystal size. Bubble ripening in the presence of crystals exhibits intermittent dissolution dynamics, with phases of arrest, when crystals jam at the interface, followed by phases of dissolution, when monostearin crystals are ejected from the interface. In the end, crystals do not confer enough mechanical strength to the bubbles to prevent them from fully dissolving.
引用
收藏
页码:10042 / 10052
页数:11
相关论文
共 50 条
  • [41] BUBBLE-GROWTH CALCULATION WITHOUT NEGLECT OF INTERFACIAL DISCONTINUITIES
    BORNHORS.WJ
    HATSOPOU.GN
    MECHANICAL ENGINEERING, 1968, 90 (04) : 133 - &
  • [42] BUBBLE-GROWTH CALCULATION WITHOUT NEGLECT OF INTERFACIAL DISCONTINUITIES
    BORNHORST, WJ
    HATSOPOULOS, GN
    JOURNAL OF APPLIED MECHANICS, 1967, 34 (04): : 847 - +
  • [43] Bulk dynamics for interfacial growth models
    López, C
    Garrido, PL
    de los Santos, F
    PHYSICAL REVIEW E, 2000, 62 (04): : 4747 - 4751
  • [44] Progress in the studies of interfacial energy and kinetics of crystal growth/dissolution
    Tang, RK
    PROGRESS IN CHEMISTRY, 2005, 17 (02) : 368 - 376
  • [45] Influence of interfacial curvature on the growth and dissolution kinetics of a spherical precipitate
    Enomoto, M
    Nojiri, N
    SCRIPTA MATERIALIA, 1997, 36 (06) : 625 - 632
  • [46] A new bubble dynamics model to study bubble growth, deformation, and coalescence
    Huber, C.
    Su, Y.
    Nguyen, C. T.
    Parmigiani, A.
    Gonnermann, H. M.
    Dufek, J.
    JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2014, 119 (01) : 216 - 239
  • [47] THE GROWTH DYNAMICS OF HELIUM CRYSTALS
    BALIBAR, S
    GALLET, F
    GRANER, F
    GUTHMANN, C
    ROLLEY, E
    PHYSICA B, 1991, 169 (1-4): : 209 - 216
  • [48] Growth and dissolution of calcium oxalate monohydrate (COM) crystals
    Petrova, EV
    Gvozdev, NV
    Rashkovich, LN
    JOURNAL OF OPTOELECTRONICS AND ADVANCED MATERIALS, 2004, 6 (01): : 261 - 268
  • [49] Bubble dynamics and their effects on interfacial heat transfer in one single microchannel
    Han, Qun
    Ma, Jiaxuan
    Khan, Ahmed Shehab
    Chang, Wei
    Li, Chen
    Tong, Yan
    Li, Wenming
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2024, 221
  • [50] Dynamics of Interfacial Bubble Controls Adhesion Mechanics in Vander Waals Heterostructure
    Sangani, L. D. Varma
    Mandal, Supriya
    Ghosh, Sanat
    Watanabe, Kenji
    Taniguchi, Takashi
    Deshmukh, Mandar M.
    NANO LETTERS, 2022, 22 (09) : 3612 - 3619