Local Hydraulic Resistance in Heterogeneous Porous Media

被引:2
|
作者
Krol, Quirine [1 ]
Fouxon, Itzhak [1 ,2 ]
Corso, Pascal [1 ]
Holzner, Markus [1 ,3 ,4 ]
机构
[1] Swiss Fed Inst Technol, Inst Environm Engn, Zurich, Switzerland
[2] Yonsei Univ, Dept Computat Sci & Engn, Seoul, South Korea
[3] Swiss Fed Inst Water Sci & Technol, Dept Surface Waters Res & Management, EAWAG, Bern, Switzerland
[4] Swiss Fed Inst Forest Snow & Landscape Res WSL, Biodivers & Conservat Biol, Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
permeability; hydraulic resistance; porous media; heterogeneity; gaussian random fields; microstructure; GAUSSIAN RANDOM-FIELDS; FLOW; PERMEABILITY; DISPERSION; MODEL;
D O I
10.1029/2021GL094694
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We examine the validity of the commonly used Hagen-Poiseuille model of local resistance of porous media using direct numerical simulations. We provide theoretical arguments that highlight possible limitations of this model and formulate a new constitutive model that is based on the circularity of iso-pressure surfaces. We compare the performance of both models on three different three-dimensional artificial porous media. We show that the new model improves the root-mean-squared-relative error from 59%, 48% and 32% for the HP model to 12%, 14% and 18% for the three porous media respectively. We anticipate that our approach may find broad application in network models of porous media that are typically build from 3D images with intricate pore geometries.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] Foam Mobility in Heterogeneous Porous Media
    A. R. Kovscek
    H. J. Bertin
    Transport in Porous Media, 2003, 52 : 37 - 49
  • [32] TRANSPORT IN HETEROGENEOUS POROUS-MEDIA
    不详
    PHYSICA SCRIPTA, 1987, T19B : 524 - 530
  • [33] Flow Path Resistance in Heterogeneous Porous Media Recast into a Graph-Theory Problem
    Z. Kanavas
    F. J. Pérez-Reche
    F. Arns
    V. L. Morales
    Transport in Porous Media, 2023, 146 : 267 - 282
  • [34] Flow Path Resistance in Heterogeneous Porous Media Recast into a Graph-Theory Problem
    Kanavas, Z.
    Perez-Reche, F. J.
    Arns, F.
    Morales, V. L.
    TRANSPORT IN POROUS MEDIA, 2023, 146 (1-2) : 267 - 282
  • [35] Unsaturated Hydraulic Conductivity in Composite Porous Media
    Piero Rojas, Jhan
    Carlos Ruge, Juan
    Adolfo Carrillo, Gustavo
    APPLIED SCIENCES-BASEL, 2022, 12 (18):
  • [36] Hydraulic tortuosity in arbitrary porous media flow
    Duda, Artur
    Koza, Zbigniew
    Matyka, Maciej
    PHYSICAL REVIEW E, 2011, 84 (03)
  • [37] An inverse problem for the hydraulic properties of porous media
    DuChateau, P
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1997, 28 (03) : 611 - 632
  • [38] Effective hydraulic conductivity of a randomly heterogeneous porous medium
    Stepanyants, YA
    Teodorovich, EV
    WATER RESOURCES RESEARCH, 2003, 39 (03)
  • [39] Multiscale Model Reduction with Local Online Correction for Polymer Flooding Process in Heterogeneous Porous Media
    Vasilyeva, Maria
    Spiridonov, Denis
    MATHEMATICS, 2023, 11 (14)
  • [40] Phase field modeling of hydraulic fracturing with interfacial damage in highly heterogeneous fluid-saturated porous media
    Xia, L.
    Yvonnet, J.
    Ghabezloo, S.
    ENGINEERING FRACTURE MECHANICS, 2017, 186 : 158 - 180