Thermo-Diffusion and Multislip Effects on MHD Mixed Convection Unsteady Flow of Micropolar Nanofluid over a Shrinking/Stretching Sheet with Radiation in the Presence of Heat Source

被引:76
|
作者
Abdal, Sohaib [1 ]
Ali, Bagh [2 ]
Younas, Saba [3 ]
Ali, Liaqat [4 ]
Mariam, Amna [3 ]
机构
[1] Northwest Univ, Sch Math, 229 North Taibai Ave, Xian 7100069, Peoples R China
[2] Northwestern Polytech Univ, Sch Sci, Dept Appl Math, Dongxiang Rd, Xian 710129, Peoples R China
[3] Natl Coll Business Adm & Econ, Sch Math, Lahore Layyah Campus,Pass Rd, Layyah 31200, Pakistan
[4] Xi An Jiao Tong Univ, Sch Energy & Power, 28 Xianning West Rd, Xian 7100049, Peoples R China
来源
SYMMETRY-BASEL | 2020年 / 12卷 / 01期
关键词
MHD; mixed convection; micropolar fluid; nano fluid; radiation; thermo-diffusion; STAGNATION-POINT FLOW; STRETCHING SHEET; MASS-TRANSFER; FLUID; NANOPARTICLES; CONDUCTIVITY; SIMULATION; VELOCITY;
D O I
10.3390/sym12010049
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The main purpose of this study is to investigate the multislip effects on the magneto-hydrodynamic (MHD) mixed convection unsteady flow of micropolar nano-fluids over a stretching/shrinking sheet along with radiation in the presence of a heat source. The consequences of multislip and buoyancy conditions have been integrated. By using the suitable similarity variables are used to solve the governing non-linear partial differential equations into a system of coupled non-linear ordinary differential equations. The transformed equations are solved numerically by using Runge-Kutta fourth-order method with shooting technique. The impacts of the several parameters on the velocity, temperature, micro-rotation, and concentration profiles as well as on the skin friction coefficient, Sherwood number, and Nusselt number are discussed with the help of graphs and tables.
引用
收藏
页数:17
相关论文
共 50 条
  • [41] Soret and nonuniform heat source/sink effects in micropolar nanofluid flow over an inclined stretching sheet
    Diwate, Machindranath
    Janthe, Pradeep G.
    Kulkarni, Nitiraj V.
    Sunitha, S.
    Tawade, Jagadish V.
    Nazarova, Nodira
    Gupta, Manish
    Batool, Nadia
    International Journal of Thermofluids, 2025, 27
  • [42] Influence of chemical reaction and heat source on dissipative MHD mixed convection flow of a Casson nanofluid over a nonlinear permeable stretching sheet
    Ibrahim, S. M.
    Lorenzini, G.
    Kumar, P. Vijaya
    Raju, C. S. K.
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2017, 111 : 346 - 355
  • [43] Thermally and solutally convective radiation in MHD stagnation point flow of micropolar nanofluid over a shrinking sheet
    Siddiq, M. K.
    Rauf, A.
    Shehzad, S. A.
    Abbasi, F. M.
    Meraj, M. A.
    ALEXANDRIA ENGINEERING JOURNAL, 2018, 57 (02) : 963 - 971
  • [45] MHD Stagnation Point Flow Over a Permeable Stretching/Shrinking Sheet with a Heat Sink and Radiation Effects
    Nasir, Nor Ain Azeany Mohd
    Ishak, Anuar
    Pop, Ioan
    Zainuddin, Nooraini
    PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON MATHEMATICAL SCIENCES AND TECHNOLOGY 2018 (MATHTECH 2018): INNOVATIVE TECHNOLOGIES FOR MATHEMATICS & MATHEMATICS FOR TECHNOLOGICAL INNOVATION, 2019, 2184
  • [46] Convective heat transfer and thermo-diffusion effects on flow of nanofluid towards a permeable stretching sheet saturated by a porous medium
    Khan, Umar
    Mohyud-Din, Syed Tauseef
    Bin-Mohsin, Bandar
    AEROSPACE SCIENCE AND TECHNOLOGY, 2016, 50 : 196 - 203
  • [47] Effect of heat generation on mixed convection of micropolar Casson fluid over a stretching/shrinking sheet with suction
    Jusoh, Rahimah
    Nazar, Roslinda
    14TH INTERNATIONAL SYMPOSIUM ON GEOMETRIC FUNCTION THEORY AND APPLICATIONS, 2019, 1212
  • [48] Thermal radiation on unsteady electrical MHD flow of nanofluid over stretching sheet with chemical reaction
    Daniel, Yahaya Shagaiya
    Aziz, Zainal Abdul
    Ismail, Zuhaila
    Salah, Faisal
    JOURNAL OF KING SAUD UNIVERSITY SCIENCE, 2019, 31 (04) : 804 - 812
  • [49] MHD Boundary Layer Flow of a Nanofluid Over an Exponentially Stretching Sheet in the Presence of Radiation
    Loganathan, P.
    Vimala, C.
    HEAT TRANSFER-ASIAN RESEARCH, 2014, 43 (04): : 321 - 331
  • [50] Buoyancy effect on MHD flow of nanofluid over a stretching sheet in the presence of thermal radiation
    Rashidi, M. M.
    Ganesh, N. Vishnu
    Hakeem, A. K. Abdul
    Ganga, B.
    JOURNAL OF MOLECULAR LIQUIDS, 2014, 198 : 234 - 238