On p-Optimal Proof Systems and Logics for PTIME

被引:0
|
作者
Chen, Yijia [1 ]
Flum, Joerg [2 ]
机构
[1] Shanghai Jiao Tong Univ, Dept Comp Sci, Shanghai, Peoples R China
[2] Albert-Ludwigs Universitat Freiburg, Matemat Inst, Freiburg, Germany
关键词
COMPLETE-SETS; COMPLEXITY;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that TAUT has a p-optimal proof system if and only if a logic related to least fixed-point logic captures polynomial time on all finite structures. Furthermore, we show that TAUT has no effective p-optimal proof system if NTIME(h(O(1))) not subset of DIIME(h(O(logh))) for every time constructible and increasing function h.
引用
收藏
页码:321 / +
页数:2
相关论文
共 50 条
  • [31] Optimal proof systems, optimal acceptors and recursive presentability
    Sadowski, Zenon
    [J]. FUNDAMENTA INFORMATICAE, 2007, 79 (1-2) : 169 - 185
  • [32] Optimal proof systems and sparse sets
    Buhrman, H
    Fenner, S
    Fortnow, L
    van Melkebeek, D
    [J]. STACS 2000: 17TH ANNUAL SYMPOSIUM ON THEORETICAL ASPECT OF COMPUTER SCIENCE, 2000, 1770 : 407 - 418
  • [33] Cut-free proof systems for logics of weak excluded middle
    A. Ciabattoni
    D. M. Gabbay
    N. Olivetti
    [J]. Soft Computing, 1999, 2 (4) : 147 - 156
  • [34] Approximating horn knowledge bases in regular description logics to have PTIME data complexity
    Nguyen, Linh Anh
    [J]. Logic Programming, Proceedings, 2007, 4670 : 438 - 439
  • [35] Logics with disjunction and proof by cases
    San-min Wang
    Petr Cintula
    [J]. Archive for Mathematical Logic, 2008, 47 : 435 - 446
  • [36] Proof complexity of substructural logics
    Jalali, Raheleh
    [J]. ANNALS OF PURE AND APPLIED LOGIC, 2021, 172 (07)
  • [37] Proof analysis in intermediate logics
    Roy Dyckhoff
    Sara Negri
    [J]. Archive for Mathematical Logic, 2012, 51 : 71 - 92
  • [38] A proof procedure for adaptive logics
    Verdee, Peter
    [J]. LOGIC JOURNAL OF THE IGPL, 2013, 21 (05) : 743 - 766
  • [39] Logics with disjunction and proof by cases
    Wang, San-min
    Cintula, Petr
    [J]. ARCHIVE FOR MATHEMATICAL LOGIC, 2008, 47 (05) : 435 - 446
  • [40] PROOF THEORIES FOR SEMILATTICE LOGICS
    GIAMBRONE, S
    URQUHART, A
    [J]. ZEITSCHRIFT FUR MATHEMATISCHE LOGIK UND GRUNDLAGEN DER MATHEMATIK, 1987, 33 (05): : 433 - 439