Invertibility and a topological property of sobolev maps

被引:0
|
作者
Muller, S
Spector, SJ
Tang, Q
机构
[1] SO ILLINOIS UNIV,DEPT MATH,CARBONDALE,IL 62901
[2] UNIV SUSSEX,DEPT MATH,BRIGHTON BN1 9QH,E SUSSEX,ENGLAND
关键词
Sobolev spaces; elasticity; cavitation; singular minimizers; injectivity almost everywhere;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a bounded domain in R(n), let d : <(Omega)over bar> --> <(Omega)over bar> be a homeomorphism, and consider a function u : <(Omega)over bar> --> R(n) that agrees with d on partial derivative Omega. if u is continuous and injective then u(Omega) = d(Omega). Motivated by problems in nonlinear elasticity the relationship between u(Omega) and d(Omega) when the continuity and invertibility assumptions are weakened. Specifically maps that are continuous on almost every line and maps that lie in the Sobolev space W-1,W-p with n - 1 < p < n are considered.
引用
收藏
页码:959 / 976
页数:18
相关论文
共 50 条
  • [21] Invertibility preserving maps preserve idempotents
    Bresar, M
    Semrl, P
    MICHIGAN MATHEMATICAL JOURNAL, 1998, 45 (03) : 483 - 488
  • [22] On a class of linear maps and their positive invertibility
    Terentev, AG
    RUSSIAN MATHEMATICAL SURVEYS, 1996, 51 (06) : 1225 - 1226
  • [23] Linear maps preserving generalized invertibility
    Mbekhta, Mostafa
    Rodman, Leiba
    Semrl, Peter
    INTEGRAL EQUATIONS AND OPERATOR THEORY, 2006, 55 (01) : 93 - 109
  • [24] Topological invertibility and the closed ideal problem
    Choukri, R
    El Kinani, A
    Oudadess, M
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2003, 9 (01): : 109 - 117
  • [25] Invertibility in L-Topological Spaces
    Jose, Anjaly
    Mathew, Sunil C.
    FUZZY INFORMATION AND ENGINEERING, 2014, 6 (01) : 41 - 57
  • [26] Linear Maps Preserving Generalized Invertibility
    Mostafa Mbekhta
    Leiba Rodman
    Peter Šemrl
    Integral Equations and Operator Theory, 2006, 55 : 93 - 109
  • [27] Invertibility and the Fredholm property of difference operators
    Baskakov, AG
    MATHEMATICAL NOTES, 2000, 67 (5-6) : 690 - 698
  • [28] Invertibility and the fredholm property of difference operators
    A. G. Baskakov
    Mathematical Notes, 2000, 67 : 690 - 698
  • [29] The irregular set for maps with the specification property has full topological pressure
    Thompson, Daniel
    DYNAMICAL SYSTEMS-AN INTERNATIONAL JOURNAL, 2010, 25 (01): : 25 - 51
  • [30] Consistent invertibility and perturbations of property (R)
    Ren, Yanxun
    Jiang, Lining
    Kong, Yingying
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2022, 100 (3-4): : 435 - 447