Tensor product of quotient Hilbert modules

被引:4
|
作者
Chattopadhyay, Arup [1 ]
Das, B. Krishna [1 ]
Sarkar, Jaydeb [1 ]
机构
[1] Indian Stat Inst, Stat & Math Unit, Bangalore 560059, Karnataka, India
关键词
Hilbert modules; Hardy and weighted Bergman spaces over polydisc; Doubly commuting quotient modules; Essential normality; Wandering subspace; Rank; INVARIANT SUBSPACES; BERGMAN SPACE; SUBMODULES;
D O I
10.1016/j.jmaa.2014.11.038
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we present a unified approach to problems of tensor product of quotient modules of Hilbert modules over C[z] and corresponding submodules of reproducing kernel Hilbert modules over C[z(1),..., z(n)] and the doubly commutativity property of module multiplication operators by the coordinate functions. More precisely, for a reproducing kernel Hilbert module H over C[z(1),..., z(n)] of analytic functions on the polydisc in C-n which satisfies certain conditions, we characterize the quotient modules Q of H such that Q is of the form Q(1 circle times)...circle times Q(n), for some one-variable quotient modules {Q(1),..,Q(n)}. For H the Hardy module over polydisc, H-2 (D-n), this reduces to some recent results by Izuchi, Nakazi and Seto, and the third author. This is used to obtain a classification of co-doubly commuting submodules for a class of reproducing kernel Hilbert modules over the unit polyclisc. These results are applied to compute the cross commutators of co-doubly commuting submodules. Moreover, this provides further insight into the wandering subspaces and ranks of submodules of the Hardy module. Our results include the case of weighted Bergman modules over the unit polydisc in C-n. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:727 / 747
页数:21
相关论文
共 50 条
  • [31] Essentially normal Hilbert modules and K-homology III:: Homogenous quotient modules of Hardy modules on the bidisk
    Guo, Kun-yu
    Wang, Peng-hui
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2007, 50 (03): : 387 - 411
  • [32] Closedness of the rang of the product of projections in Hilbert modules
    Sharifi, Kamran
    JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE-JMCS, 2011, 2 (04): : 588 - 593
  • [33] Scalable frames in tensor product of Hilbert spaces
    Zakeri, Samineh
    Ahmadi, Ahmad
    INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS, 2020, 11 (02): : 149 - 159
  • [34] Type I product systems of Hilbert modules
    Barreto, SD
    Bhat, BVR
    Liebscher, V
    Skeide, M
    JOURNAL OF FUNCTIONAL ANALYSIS, 2004, 212 (01) : 121 - 181
  • [35] ADDITIVE UNITS OF PRODUCT SYSTEM OF HILBERT MODULES
    Vujosevic, Biljana
    INTERNATIONAL JOURNAL OF ANALYSIS AND APPLICATIONS, 2016, 10 (02): : 71 - 76
  • [36] On embeddings of weighted tensor product Hilbert spaces
    Hefter, Mario
    Ritter, Klaus
    JOURNAL OF COMPLEXITY, 2015, 31 (03) : 405 - 423
  • [37] Essentially normal Hilbert modules and K-homology III: Homogenous quotient modules of Hardy modules on the bidisk
    Kun-yu Guo
    Peng-hui Wang
    Science in China Series A: Mathematics, 2007, 50 : 387 - 411
  • [38] THE RELATIVE TENSOR PRODUCT OF HILBERT-SPACES
    SAUVAGEOT, JL
    JOURNAL OF OPERATOR THEORY, 1983, 9 (02) : 237 - 252
  • [39] THE HAAGERUP NORM ON THE TENSOR PRODUCT OF OPERATOR MODULES
    MAGAJNA, B
    JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 129 (02) : 325 - 348
  • [40] Tensor product of near-ring modules
    Mahmood, SJ
    Mansouri, MF
    NEARRINGS, NEARFIELDS, AND K-LOOPS, 1997, 426 : 335 - 342