Photosynthesis and carbon allocation are both important predictors of genotype productivity responses to elevated CO2 in Eucalyptus camaldulensis

被引:19
|
作者
Aspinwall, Michael J. [1 ,2 ]
Blackman, Chris J. [1 ]
de Dios, Victor Resco [1 ,3 ,4 ]
Busch, Florian A. [5 ]
Rymer, Paul D. [1 ]
Loik, Michael E. [6 ]
Drake, John E. [1 ,7 ]
Pfautsch, Sebastian [1 ]
Smith, Renee A. [1 ]
Tjoelker, Mark G. [1 ]
Tissue, David T. [1 ]
机构
[1] Western Sydney Univ, Hawkesbury Inst Environm, Locked Bag 1797, Penrith, NSW 2751, Australia
[2] Univ North Florida, Dept Biol, 1 UNF Dr, Jacksonville, FL 32224 USA
[3] Univ Lleida, AGROTECNIO Ctr, Dept Crop & Forest Sci, E-25198 Lleida, Spain
[4] Southwest Univ Sci & Technol, Sch Life Sci & Engn, Mianyang 621010, Peoples R China
[5] Australian Natl Univ, Res Sch Biol, Div Plant Sci, Acton, ACT 2601, Australia
[6] Univ Calif Santa Cruz, Dept Environm Studies, Santa Cruz, CA 95064 USA
[7] SUNY ESF, Forest & Nat Resources Management, 1 Forestry Dr, Syracuse, NY 13210 USA
关键词
atmospheric CO2; carbon sequestration; forestry; intraspecific; nitrogen-use efficiency; roots; SPRUCE PICEA-SITCHENSIS; NITROGEN-USE EFFICIENCY; ATMOSPHERIC CO2; INTRASPECIFIC VARIATION; GAS-EXCHANGE; PHENOTYPIC PLASTICITY; DIOXIDE CONCENTRATION; STOMATAL CONDUCTANCE; POPULUS-TREMULOIDES; FOREST PRODUCTIVITY;
D O I
10.1093/treephys/tpy045
中图分类号
S7 [林业];
学科分类号
0829 ; 0907 ;
摘要
Intraspecific variation in biomass production responses to elevated atmospheric carbon dioxide (eCO(2)) could influence tree species' ecological and evolutionary responses to climate change. However, the physiological mechanisms underlying genotypic variation in responsiveness to eCO(2) remain poorly understood. In this study, we grew 17 Eucalyptus camaldulensis Dehnh. subsp. camaldulensis genotypes (representing provenances from four different climates) under ambient atmospheric CO2 and eCO(2). We tested whether genotype leaf-scale photosynthetic and whole-tree carbon (C) allocation responses to eCO(2) were predictive of genotype biomass production responses to eCO(2). Averaged across genotypes, growth at eCO(2) increased in situ leaf net photosynthesis (Anet) (29%) and leaf starch concentrations (37%). Growth at eCO(2) reduced the maximum carboxylation capacity of Rubisco (-4%) and leaf nitrogen per unit area (Narea,-6%), but Narea calculated on a total non-structural carbohydrate-free basis was similar between treatments. Growth at eCO(2) also increased biomass production and altered C allocation by reducing leaf area ratio (-11%) and stem mass fraction (SMF,-9%), and increasing leaf mass area (18%) and leaf mass fraction (5%). Overall, we found few significant CO2 x provenance or CO2 x genotype (within provenance) interactions. However, genotypes that showed the largest increases in total dry mass at eCO(2) had larger increases in root mass fraction (with larger decreases in SMF) and photosynthetic nitrogen-use efficiency (PNUE) with CO2 enrichment. These results indicate that genetic differences in PNUE and carbon sink utilization (in roots) are both important predictors of tree productivity responsiveness to eCO(2).
引用
收藏
页码:1286 / 1301
页数:16
相关论文
共 50 条
  • [31] Phosphorus and water supply independently control productivity and soil enzyme activity responses to elevated CO2 in an understorey community from a Eucalyptus woodland
    Juan Piñeiro
    Raúl Ochoa-Hueso
    Lilia Serrano-Grijalva
    Sally A. Power
    Plant and Soil, 2023, 483 : 643 - 657
  • [33] Elevated CO2 and temperature differentially affect photosynthesis and resource allocation in flag and penultimate leaves of wheat
    Perez, P.
    Zita, G.
    Morcuende, R.
    Martinez-Carrasco, R.
    PHOTOSYNTHETICA, 2007, 45 (01) : 9 - 17
  • [34] Photosynthesis and growth responses of peanut (Arachis hypogaea L.) to salinity at elevated CO2
    Ratnakumar, P.
    Rajendrudu, G.
    Swamy, P. M.
    PLANT SOIL AND ENVIRONMENT, 2013, 59 (09) : 410 - 416
  • [35] Responses of citrus leaf photosynthesis, chlorophyll fluorescence, macronutrient and carbohydrate contents to elevated CO2
    Keutgen, N
    Chen, K
    JOURNAL OF PLANT PHYSIOLOGY, 2001, 158 (10) : 1307 - 1316
  • [36] CLADODE DEVELOPMENT, ENVIRONMENTAL RESPONSES OF CO2 UPTAKE, AND PRODUCTIVITY FOR OPUNTIA-FICUS-INDICA UNDER ELEVATED CO2
    NOBEL, PS
    ISRAEL, AA
    JOURNAL OF EXPERIMENTAL BOTANY, 1994, 45 (272) : 295 - 303
  • [37] Response of photosynthesis, growth, carbon isotope discrimination and osmotic tolerance of rice to elevated CO2
    Peng, CL
    Duan, J
    Lin, GZ
    Chen, YZ
    Peng, SL
    ACTA BOTANICA SINICA, 2002, 44 (01): : 76 - 81
  • [38] Does growth temperature affect the temperature responses of photosynthesis and internal conductance to CO2?: A test with Eucalyptus regnans
    Warren, C. R.
    TREE PHYSIOLOGY, 2008, 28 (01) : 11 - 19
  • [39] Effects of elevated CO2 on model calcareous grasslands: Community, species, and genotype level responses
    Leadley, PW
    Stocklin, J
    GLOBAL CHANGE BIOLOGY, 1996, 2 (04) : 389 - 397
  • [40] Elevated CO2 levels promote both carbon and nitrogen cycling in global forests
    Cui, Jinglan
    Zheng, Miao
    Bian, Zihao
    Pan, Naiqing
    Tian, Hanqin
    Zhang, Xiuming
    Qiu, Ziyue
    Xu, Jianming
    Gu, Baojing
    NATURE CLIMATE CHANGE, 2024, 14 (05) : 511 - 517