Fast Road Detection by CNN-Based Camera-Lidar Fusion and Spherical Coordinate Transformation

被引:21
|
作者
Lee, Jae-Seol [1 ]
Park, Tae-Hyoung [2 ]
机构
[1] Chungbuk Natl Univ, Dept Control & Robot Engn, Cheongju 28644, South Korea
[2] Chungbuk Natl Univ, Sch Elect Engn, Cheongju 28644, South Korea
关键词
Laser radar; Cameras; Sensor fusion; Autonomous vehicles; Image segmentation; Convolutional neural networks; Road detection; lidar and camera fusion; segmentation; convolution neural network; spherical coordinate transformation; autonomous vehicles; SEGMENTATION;
D O I
10.1109/TITS.2020.2988302
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
We propose a new camera-lidar fusion method for road detection where the spherical coordinate transformation is introduced to decrease the gap between the point cloud of 3D lidar data. The camera's color data and the 3D lidar's height data are transformed into the same spherical coordinate, and then input to the convolution neural network for segmentation. Faster segmentation is possible due to the reduced size of input data. To increase the detection accuracy, this modified SegNet expands the receptive field of the network. Using the KITTI dataset, we present the experimental results to show the usefulness of the proposed method.
引用
收藏
页码:5802 / 5810
页数:9
相关论文
共 50 条
  • [31] Towards Camera-LIDAR Fusion-Based Terrain Modelling for Planetary Surfaces: Review and Analysis
    Shaukat, Affan
    Blacker, Peter C.
    Spiteri, Conrad
    Gao, Yang
    SENSORS, 2016, 16 (11):
  • [32] Neural Approach to Coordinate Transformation for LiDAR-Camera Data Fusion in Coastal Observation
    Garczynska-Cyprysiak, Ilona
    Kazimierski, Witold
    Wlodarczyk-Sielicka, Marta
    SENSORS, 2024, 24 (20)
  • [33] CNN-Based UAV Detection and Classification Using Sensor Fusion
    Lee, Hunje
    Han, Sujeong
    Byeon, Jeong-Il
    Han, Seoulgyu
    Myung, Rangun
    Joung, Jingon
    Choi, Jihoon
    IEEE ACCESS, 2023, 11 : 68791 - 68808
  • [34] Early Fusion of Camera and Lidar for robust road detection based on U-Net FCN
    Wulff, Florian
    Schaufele, Bernd
    Sawade, Oliver
    Becker, Daniel
    Henke, Birgit
    Radusch, Ilja
    2018 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2018, : 1426 - 1431
  • [35] Embedding CNN-Based Fast Obstacles Detection for Autonomous Vehicles
    Hu, Chaowei
    Wang, Yunpeng
    Yu, Guizhen
    Wang, Zhangyu
    Lei, Ao
    Hu, Zhehua
    SAE Technical Papers, 2018, 2018-August (August):
  • [36] Camera-Lidar sensor fusion for drivable area detection in winter weather using convolutional neural networks
    Rawashdeh, Nathir A.
    Bos, Jeremy P.
    Abu-Alrub, Nader J.
    OPTICAL ENGINEERING, 2023, 62 (03)
  • [37] MapDistill: Boosting Efficient Camera-Based HD Map Construction via Camera-LiDAR Fusion Model Distillation
    Hao, Xiaoshuai
    Li, Ruikai
    Zhang, Hui
    Li, Dingzhe
    Yin, Rong
    Jung, Sangil
    Park, Seung-In
    Yoo, Byungin
    Zhao, Haimei
    Zhang, Jing
    COMPUTER VISION - ECCV 2024, PT III, 2025, 15061 : 166 - 183
  • [38] High speed road boundary detection with CNN-based dynamic programming
    Kim, H
    Hong, S
    Oh, T
    Lee, J
    ADVANCES IN MULTIMEDIA INFORMATION PROCESSING - PCM 2002, PROCEEDING, 2002, 2532 : 806 - 813
  • [39] Object Classification Using CNN-Based Fusion of Vision and LIDAR in Autonomous Vehicle Environment
    Gao, Hongbo
    Cheng, Bo
    Wang, Jianqiang
    Li, Keqiang
    Zhao, Jianhui
    Li, Deyi
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2018, 14 (09) : 4224 - 4231
  • [40] Road Pothole Recognition and Size Measurement Based on the Fusion of Camera and LiDAR
    Cai, Yongxiang
    Deng, Mingxing
    Xu, Xin
    Wang, Wei
    Xu, Xiaowei
    IEEE ACCESS, 2025, 13 : 46210 - 46227