Fast Road Detection by CNN-Based Camera-Lidar Fusion and Spherical Coordinate Transformation

被引:21
|
作者
Lee, Jae-Seol [1 ]
Park, Tae-Hyoung [2 ]
机构
[1] Chungbuk Natl Univ, Dept Control & Robot Engn, Cheongju 28644, South Korea
[2] Chungbuk Natl Univ, Sch Elect Engn, Cheongju 28644, South Korea
关键词
Laser radar; Cameras; Sensor fusion; Autonomous vehicles; Image segmentation; Convolutional neural networks; Road detection; lidar and camera fusion; segmentation; convolution neural network; spherical coordinate transformation; autonomous vehicles; SEGMENTATION;
D O I
10.1109/TITS.2020.2988302
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
We propose a new camera-lidar fusion method for road detection where the spherical coordinate transformation is introduced to decrease the gap between the point cloud of 3D lidar data. The camera's color data and the 3D lidar's height data are transformed into the same spherical coordinate, and then input to the convolution neural network for segmentation. Faster segmentation is possible due to the reduced size of input data. To increase the detection accuracy, this modified SegNet expands the receptive field of the network. Using the KITTI dataset, we present the experimental results to show the usefulness of the proposed method.
引用
收藏
页码:5802 / 5810
页数:9
相关论文
共 50 条
  • [1] Fast Lidar - Camera Fusion for Road Detection by CNN and Spherical Coordinate Transformation
    Lee, Jae-Seol
    Park, Tae-Hyoung
    2019 30TH IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV19), 2019, : 1797 - 1802
  • [2] Hybrid conditional random field based camera-LIDAR fusion for road detection
    Xiao, Liang
    Wang, Ruili
    Dai, Bin
    Fang, Yuqiang
    Liu, Daxue
    Wu, Tao
    INFORMATION SCIENCES, 2018, 432 : 543 - 558
  • [3] Regression with Ensemble of RANSAC in Camera-LiDAR Fusion for Road Boundary Detection and Modeling
    Rasyidy, Mukhlas A.
    Nazaruddin, Yul Y.
    Widyotriatmo, Augie
    2022 IEEE INTERNATIONAL CONFERENCE ON MULTISENSOR FUSION AND INTEGRATION FOR INTELLIGENT SYSTEMS (MFI), 2022,
  • [4] Camera-LiDAR Fusion for Object Detection,Tracking and Prediction
    Huang Y.
    Zhou J.
    Huang Q.
    Li B.
    Wang L.
    Zhu J.
    Wuhan Daxue Xuebao (Xinxi Kexue Ban)/Geomatics and Information Science of Wuhan University, 2024, 49 (06): : 945 - 951
  • [5] Analysis of Model Optimization Strategies for a Low-Resolution Camera-Lidar Fusion Based Road Detection Network
    Yang, Chao
    Zhu, Liwei
    Ai, Yunfeng
    Tian, Bin
    Chen, Long
    Zhao, Bin
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 3228 - 3233
  • [6] YCANet: Target Detection for Complex Traffic Scenes Based on Camera-LiDAR Fusion
    Shen, Zhen
    He, Yunze
    Du, Xu
    Yu, Junfeng
    Wang, Hongjin
    Wang, Yaonan
    IEEE SENSORS JOURNAL, 2024, 24 (06) : 8379 - 8389
  • [7] Train Frontal Obstacle Detection Method with Camera-LiDAR Fusion
    Kageyama R.
    Nagamine N.
    Mukojima H.
    Quarterly Report of RTRI (Railway Technical Research Institute), 2022, 63 (03) : 181 - 186
  • [8] Road perception and road line detection based on fusion of LiDAR and camera
    Fan Yimei
    Yu Xin
    Xu Nana
    Chen Jinqi
    Chen Tianding
    SEVENTH ASIA PACIFIC CONFERENCE ON OPTICS MANUFACTURE (APCOM 2021), 2022, 12166
  • [9] Automatic Extrinsic Parameter Calibration for Camera-LiDAR Fusion Using Spherical Target
    Zhang, Guanyu
    Wu, Kunyang
    Lin, Jun
    Wang, Tianhao
    Liu, Yang
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2024, 9 (06): : 5743 - 5750
  • [10] Fast-CLOCs: Fast Camera-LiDAR Object Candidates Fusion for 3D Object Detection
    Pang, Su
    Morris, Daniel
    Radha, Hayder
    2022 IEEE WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV 2022), 2022, : 3747 - 3756