AN ADMM BASED NETWORK FOR HYPERSPECTRAL UNMIXING TASKS

被引:2
|
作者
Zhou, Chao [1 ]
Rodrigues, Miguel R. D. [1 ]
机构
[1] UCL, Dept Elect & Elect Engn, London, England
基金
英国工程与自然科学研究理事会;
关键词
HSI unmixing; Deep Neural Networks; Algorithm Unrolling; Algorithm Unfolding;
D O I
10.1109/ICASSP39728.2021.9414555
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
In this paper, we use algorithm unrolling approaches in order to design a new neural network structure applicable to hyperspectral unmixing challenges. In particular, building upon a constrained sparse regression formulation of the underlying unmixing problem, we unroll an ADMM solver onto a neural network architecture that can be used to deliver the abundances of different (known) endmembers given a reflectance spectrum. Our proposed network - which can be readily trained using standard supervised learning procedures - is shown to possess a richer structure consisting of various skip connections and shortcuts than other competing architectures. Moreover, our proposed network also delivers state-of-the-art unmixing performance compared to competing methods.
引用
收藏
页码:1870 / 1874
页数:5
相关论文
共 50 条
  • [31] An Abundance-Guided Attention Network for Hyperspectral Unmixing
    Tao, Xuanwen
    Paoletti, Mercedes E.
    Wu, Zhaoyue
    Haut, Juan M.
    Ren, Peng
    Plaza, Antonio
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 14
  • [32] A cascaded autoencoder unmixing network for Hyperspectral anomaly detection
    Li, Kun
    Wang, Yingqian
    Ling, Qiang
    Cai, Yaoming
    Qin, Yao
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2025, 136
  • [33] JMnet: Joint Metric Neural Network for Hyperspectral Unmixing
    Min, Anyou
    Guo, Ziyang
    Li, Hong
    Peng, Jiangtao
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [34] Autoencoder Network for Hyperspectral Unmixing With Adaptive Abundance Smoothing
    Hua, Ziqiang
    Li, Xiaorun
    Qiu, Qunhui
    Zhao, Liaoying
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2021, 18 (09) : 1640 - 1644
  • [35] JMnet: Joint Metric Neural Network for Hyperspectral Unmixing
    Min, Anyou
    Guo, Ziyang
    Li, Hong
    Peng, Jiangtao
    IEEE Transactions on Geoscience and Remote Sensing, 2022, 60
  • [36] Unrolling Plug-and-Play Network for Hyperspectral Unmixing
    Zhao, Min
    Tang, Linruize
    Chen, Jie
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2025, 63
  • [37] A Reversible Generative Network for Hyperspectral Unmixing With Spectral Variability
    Gao, Yuyou
    Pan, Bin
    Xu, Xia
    Song, Xinyu
    Shi, Zhenwei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 15
  • [38] MULTIVIEW SIAMESE COLLABORATIVE NETWORK FOR HYPERSPECTRAL IMAGE UNMIXING
    Yang, Zimo
    Qi, Lin
    Gao, Feng
    Lin, Junyan
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 5902 - 5905
  • [39] Residual Dense Autoencoder Network for Nonlinear Hyperspectral Unmixing
    Yang, Xu
    Chen, Jianguo
    Wang, Chengbin
    Chen, Zihao
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 5580 - 5595
  • [40] HYPERSPECTRAL NONLINEAR UNMIXING VIA GENERATIVE ADVERSARIAL NETWORK
    Tang, Maofeng
    Qu, Ying
    Qi, Hairong
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2404 - 2407