q-quaternions and q-deformed su(2) instantons

被引:2
|
作者
Fiore, Gaetano [1 ,2 ]
机构
[1] Univ Naples Federico II, Dipartimento Matemat & Applicaz, V Claudio 21, I-80125 Naples, Italy
[2] Ist Nazl Fis Nucl, Sez Napoli, I-80126 Naples, Italy
关键词
D O I
10.1063/1.2793572
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct (anti-)instanton solutions of a would-be q-deformed su(2) Yang-Mills theory on the quantum Euclidean space R-q(4) [the SOq(4)-covariant noncommutative space] by reinterpreting the function algebra on the latter as a q-quaternion bialgebra. Since the (anti-)self-duality equations are covariant under the quantum group of deformed rotations, translations, and scale change, by applying the latter we can generate new solutions from the one centered at the origin and with unit size. We also construct multi-instanton solutions. As they depend on noncommuting parameters playing the roles of "sizes" and "coordinates of the centers" of the instantons, this indicates that the moduli space of a complete theory should be a noncommutative manifold. Similarly, gauge transformations should be allowed to depend on additional noncommutative parameters. (C) 2007 American Institute of Physics.
引用
收藏
页数:32
相关论文
共 50 条
  • [41] Representation of the q-deformed oscillator
    Guichardet, A
    STOCHASTIC ANALYSIS AND MATHEMATICAL PHYSICS (ANESTOC '98), 2000, : 97 - 99
  • [42] Classical q-deformed dynamics
    Lavagno, A
    Scarfone, AM
    Swamy, PN
    EUROPEAN PHYSICAL JOURNAL B, 2006, 50 (1-2): : 351 - 354
  • [43] q-Deformed kink solutions
    De Lima, A. F.
    De Lima Rodrigues, R.
    INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2006, 21 (17): : 3605 - 3613
  • [44] Q-DEFORMED PARACOMMUTATION RELATIONS
    RALCHENKO, YV
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1992, 25 (19): : L1155 - L1158
  • [45] q-Deformed nonlinear maps
    Jaganathan, R
    Sinha, S
    PRAMANA-JOURNAL OF PHYSICS, 2005, 64 (03): : 411 - 421
  • [46] q-Deformed Loewner Evolution
    Gherardi, Marco
    Nigro, Alessandro
    JOURNAL OF STATISTICAL PHYSICS, 2013, 152 (03) : 452 - 472
  • [47] On q-deformed creation operator a
    Yang, YP
    Zhao, CF
    Yu, ZR
    COMMUNICATIONS IN THEORETICAL PHYSICS, 1997, 28 (02) : 191 - 194
  • [48] A q-deformed uncertainty relation
    Zhang, JZ
    PHYSICS LETTERS A, 1999, 262 (2-3) : 125 - 130
  • [49] On q-deformed hyponormal operators
    Ota, S
    MATHEMATISCHE NACHRICHTEN, 2003, 248 : 144 - 150
  • [50] A q-deformed nonlinear map
    Jaganathan, R
    Sinha, S
    PHYSICS LETTERS A, 2005, 338 (3-5) : 277 - 287