Distributive lattices and Auslander regular algebras
被引:5
|
作者:
Iyama, Osamu
论文数: 0引用数: 0
h-index: 0
机构:
Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, JapanUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Iyama, Osamu
[1
]
Marczinzik, Rene
论文数: 0引用数: 0
h-index: 0
机构:
Univ Stuttgart, Inst Algebra & Number Theory, Pfaffenwaldring 57, D-70569 Stuttgart, GermanyUniv Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Marczinzik, Rene
[2
]
机构:
[1] Univ Tokyo, Grad Sch Math Sci, Meguro Ku, 3-8-1 Komaba, Tokyo 1538914, Japan
Let L denote a finite lattice with at least two points and let A denote the incidence K-algebra of L over a field K. We prove that L is distributive if and only if A is an Auslander regular ring, which gives a homological characterisation of distributive lattices. In this case, A has an explicit minimal injective coresolution, whose i-th term is given by the elements of L covered by precisely i elements. We give a combinatorial formula of the Bass numbers of A. We apply our results to show that the order dimension of a distributive lattice L coincides with the global dimension of the incidence algebra of L. Also we categorify the rowmotion bijection for distributive lattices using higher Auslander-Reiten translates of the simple modules. (c) 2022 Elsevier Inc. All rights reserved.