Bottom Interfacial Engineering for Methylammonium-Free Regular-Structure Planar Perovskite Solar Cells over 21%

被引:11
|
作者
Leng, Shibing [1 ]
Wang, Luyao [1 ]
Wang, Xin [1 ]
Zhang, Zhanfei [1 ]
Liang, Jianghu [1 ]
Zheng, Yiting [1 ]
Jiang, Jinkun [1 ]
Zhang, Zhiang [1 ]
Liu, Xiao [1 ]
Qiu, Yuankun [1 ]
Chen, Chun-Chao [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, 800 Dongchuan Rd, Shanghai 200240, Peoples R China
基金
中国国家自然科学基金;
关键词
crystallinity; interface engineering; MA-free perovskite solar cells; O-phenanthroline derivatives; planar perovskite solar cells; ZNO; EFFICIENT; PERFORMANCE; STABILITY; LAYER; RECOMBINATION; CONTACT; ARRAYS; PHASE; FILMS;
D O I
10.1002/solr.202100285
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Formamidinium cesium (FACs) perovskite solar cells (PSCs) with the exclusion of methylammonium (MA) cations often have greatly improved device stability; however, their inferior performance compared with MA-based devices has impeded the real application. Among various device engineering strategies, bottom interfacial engineering is a promising method to simultaneously achieve the passivation of interfacial defects and the crystallization control of perovskite. Herein, a simple and effective bottom interfacial design is presented to improve the efficiency and stability of FACs PSCs by capping o-phenanthroline derivatives on the ZnO electron transporting layer (ETL). The most efficient modifier, 4,7-Dichloro-1,10-phenanthroline (Cl-phen), can improve the crystallinity of the perovskite film by chlorinated surface and passivate the defects of ZnO by reducing surface hydroxyl groups and oxygen vacancies. In addition, Cl-phen modified ZnO shows better energy alignment with FACs perovskite and increases the built-in electric field cascade by 80 mV. As a result, a champion device efficiency of 21.15% is obtained using ZnO/Cl-phen bilayer ETL. The stability has also been improved using ZnO/Cl-phen bilayer ETL, in which 91.5% of initial PCE is retained after 1500 h of storage at ambient environment (RH: 40-50%) without encapsulation.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Interfacial Structure and Composition Managements for High-Performance Methylammonium-Free Perovskite Solar Cells
    Li, Shunde
    Liu, Zhou
    Qiao, Zhi
    Wang, Xiao
    Cheng, Lei
    Zhai, Yufeng
    Xu, Qiaofei
    Li, Zhimin
    Meng, Ke
    Chen, Gang
    ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (52)
  • [2] Thermally evaporated methylammonium-free perovskite solar cells
    Ji, Ran
    Zhang, Zongbao
    Cho, Changsoon
    An, Qingzhi
    Paulus, Fabian
    Kroll, Martin
    Loeffler, Markus
    Nehm, Frederik
    Rellinghaus, Bernd
    Leo, Karl
    Vaynzof, Yana
    JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (23) : 7725 - 7733
  • [3] Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture
    Turren-Cruz, Silver-Hamill
    Hagfeldt, Anders
    Saliba, Michael
    SCIENCE, 2018, 362 (6413) : 449 - +
  • [4] A comprehensive simulation study of methylammonium-free perovskite solar cells
    Sayah, G. T.
    RESULTS IN OPTICS, 2023, 11
  • [5] Multisource Vacuum Deposition of Methylammonium-Free Perovskite Solar Cells
    Chiang, Yu-Hsien
    Anaya, Miguel
    Stranks, Samuel D.
    ACS ENERGY LETTERS, 2020, 5 (08): : 2498 - 2504
  • [6] Interfacial Embedding for High-Efficiency and Stable Methylammonium-Free Perovskite Solar Cells with Fluoroarene Hydrazine
    Khadka, Dhruba B.
    Shirai, Yasuhiro
    Yanagida, Masatoshi
    Tadano, Terumasa
    Miyano, Kenjiro
    ADVANCED ENERGY MATERIALS, 2022, 12 (38)
  • [7] Stable and High-Efficiency Methylammonium-Free Perovskite Solar Cells
    Gao, Xiao-Xin
    Luo, Wen
    Zhang, Yi
    Hu, Ruiyuan
    Zhang, Bao
    Zuettel, Andreas
    Feng, Yaqing
    Nazeeruddin, Mohammad Khaja
    ADVANCED MATERIALS, 2020, 32 (09)
  • [8] Additive engineering in spray enables efficient methylammonium-free wide-bandgap perovskite solar cells
    Chen, Xiao
    Geng, Cong
    Yu, Xinxin
    Feng, Yishuai
    Liang, Cheng
    Peng, Yong
    Cheng, Yi-bing
    MATERIALS TODAY ENERGY, 2023, 34
  • [9] Surface Dedoping for Methylammonium-Free Tin-Lead Perovskite Solar Cells
    Li, Hui
    Chang, Bohong
    Wang, Lian
    Wu, Yutong
    Liu, Zhen
    Pan, Lu
    Yin, Longwei
    ACS ENERGY LETTERS, 2024, 9 (02) : 400 - 409
  • [10] Tuning phase stability and interfacial dipole for efficient methylammonium-free Sn-Pb perovskite solar cells
    Tian, Congcong
    Zhang, Zhanfei
    Sun, Anxin
    Liang, Jianghu
    Zheng, Yiting
    Wu, Xueyun
    Liu, Yuan
    Tang, Chen
    Chen, Chun-Chao
    NANO ENERGY, 2023, 116