Dynamic fluorescence lifetime sensing with CMOS single-photon avalanche diode arrays and deep learning processors

被引:16
|
作者
Xiao, Dong [1 ,2 ]
Zang, Zhenya [1 ,2 ]
Sapermsap, Natakorn [3 ]
Wang, Quan [1 ,2 ]
Xie, Wujun [1 ,2 ]
Chen, Yu [3 ]
Li, David Day Uei [1 ,2 ]
机构
[1] Univ Strathclyde, Strathclyde Inst Pharm & Biomed Sci, Glasgow G4 0RE, Lanark, Scotland
[2] Univ Strathclyde, Dept Biomed Engn, Glasgow G1 1XQ, Lanark, Scotland
[3] Univ Strathclyde, Dept Phys, Glasgow G4 0RE, Lanark, Scotland
基金
英国生物技术与生命科学研究理事会; 英国工程与自然科学研究理事会;
关键词
FLOW-CYTOMETRY; IMAGERS;
D O I
10.1364/BOE.425663
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Measuring fluorescence lifetimes of fast-moving cells or particles have broad applications in biomedical sciences. This paper presents a dynamic fluorescence lifetime sensing (DFLS) system based on the time-correlated single-photon counting (TCSPC) principle. It integrates a CMOS 192 x 128 single-photon avalanche diode (SPAD) array, offering an enormous photon-counting throughput without pile-up effects. We also proposed a quantized convolutional neural network (QCNN) algorithm and designed a field-programmable gate array embedded processor for fluorescence lifetime determinations. The processor uses a simple architecture, showing unparallel advantages in accuracy, analysis speed, and power consumption. It can resolve fluorescence lifetimes against disturbing noise. We evaluated the DFLS system using fluorescence dyes and fluorophore-tagged microspheres. The system can effectively measure fluorescence lifetimes within a single exposure period of the SPAD sensor, paving the way for portable time-resolved devices and shows potential in various applications. Published by The Optical Society under the terms of the Creative Commons Attribution 4.0 License.
引用
收藏
页码:3450 / 3462
页数:13
相关论文
共 50 条
  • [41] Near infrared single-photon imaging based on compressive sensing with a sinusoidally gated InGaAs/InP single-photon avalanche diode
    Hagihara, H.
    Namekata, N.
    Yokota, K.
    Inoue, S.
    ADVANCED OPTICAL TECHNIQUES FOR QUANTUM INFORMATION, SENSING, AND METROLOGY, 2020, 11295
  • [42] Surface textured silicon single-photon avalanche diode
    Zang, Kai
    Ding, Xun
    Jiang, Xiao
    Huo, Yijie
    Morea, Matthew
    Chen, Xiaochi
    Lu, Ching-Ying
    Xue, Muyu
    Chen, Yusi
    Shang, Colleen
    Kamins, Theodore I.
    Zhang, Qiang
    Pan, Jian-Wei
    Harris, James S.
    2017 CONFERENCE ON LASERS AND ELECTRO-OPTICS (CLEO), 2017,
  • [43] TCAD Simulations for a Novel Single-Photon Avalanche Diode
    Jin, Xiangliang
    Yang, Jia
    Yang, Hongjiao
    Tang, Lizhen
    Liu, Weihui
    SELECTED PAPERS FROM CONFERENCES OF THE PHOTOELECTRONIC TECHNOLOGY COMMITTEE OF THE CHINESE SOCIETY OF ASTRONAUTICS 2014, PT I, 2015, 9521
  • [44] Dual-junction single-photon avalanche diode
    Finkelstein, H.
    Hsu, M. J.
    Esener, S. C.
    ELECTRONICS LETTERS, 2007, 43 (22) : 1228 - 1229
  • [45] Tunneling in submicron CMOS single-photon avalanche diodes
    Karami, Mohammad Azim
    Amiri-Sani, Armin
    Ghormishi, Mohammad Hamzeh
    CHINESE OPTICS LETTERS, 2014, 12 (01)
  • [46] Single-photon avalanche diode model for circuit simulations
    Dalla Mora, Alberto
    Tosi, Alberto
    Tisa, Simone
    Zappa, Franco
    IEEE PHOTONICS TECHNOLOGY LETTERS, 2007, 19 (21-24) : 1922 - 1924
  • [47] Characterization of Single-Photon Avalanche Diodes in Standard CMOS
    Nouri, Babak
    Dandin, Marc
    Abshire, Pamela
    2009 IEEE SENSORS, VOLS 1-3, 2009, : 1891 - +
  • [48] Tunneling in submicron CMOS single-photon avalanche diodes
    Mohammad Azim Karami
    Armin Amiri-Sani
    Mohammad Hamzeh Ghormishi
    Chinese Optics Letters, 2014, 12 (01) : 70 - 72
  • [49] A Dual-Junction Single-Photon Avalanche Diode in 130-nm CMOS Technology
    Henderson, Robert K.
    Webster, Eric A. G.
    Grant, Lindsay A.
    IEEE ELECTRON DEVICE LETTERS, 2013, 34 (03) : 429 - 431
  • [50] CMOS Single-Photon Avalanche Diode Pixel Design for a Gun Muzzle Flash Detection Camera
    Katz, A.
    Vainstein, C.
    Shoham, A.
    Blank, T.
    Leitner, T.
    Fenigstein, A.
    Birk, Y.
    Nemirovsky, Y.
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2018, 65 (10) : 4407 - 4412