Studying the effects of chaperones on amyloid fibril formation

被引:32
|
作者
Zhang, Hong [1 ]
Xu, Li-Qiong [1 ,2 ]
Perrett, Sarah [1 ]
机构
[1] Chinese Acad Sci, Inst Biophys, Natl Lab Biomacromol, Beijing 100101, Peoples R China
[2] Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
基金
中国国家自然科学基金;
关键词
Amyloid; Prion; Chaperone; Thioflavin T; Biosensor assay; Filter retardation assay; SURFACE-PLASMON RESONANCE; QUARTZ-CRYSTAL MICROBALANCE; ALPHA-SYNUCLEIN; THIOFLAVIN-T; A-BETA; IN-VITRO; MOLECULAR CHAPERONES; PROTEIN AGGREGATION; HUNTINGTONS-DISEASE; ALZHEIMERS-DISEASE;
D O I
10.1016/j.ymeth.2010.11.009
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The results of cell and animal model studies demonstrate that molecular chaperones play an important role in controlling the processes of protein misfolding and amyloid formation in vivo. In addition, chaperones are involved in the appearance, propagation and clearance of prion phenotypes in yeast. The effect of chaperones on amyloid formation has been studied in great detail in recent years in order to elucidate the underlying mechanisms. An important approach is the direct study of effects of chaperones on amyloid fibril formation in vitro. This review introduces the methods and techniques that are commonly used to control and monitor the time course of fibril formation, and to detect interactions between chaperones and fibril-forming proteins. The techniques we address include thioflavin T binding fluorescence and filter retardation assays, size-exclusion chromatography, dynamic light scattering, and biosensor assays. Our aim in this review is to provide guidance on how to embark on study of the effect of chaperones on amyloid fibril formation, and how to avoid common problems that may be encountered, using examples and experience from the authors' lab and from the wider literature. (C) 2010 Elsevier Inc. All rights reserved.
引用
收藏
页码:285 / 294
页数:10
相关论文
共 50 条
  • [31] Pathways and intermediates of amyloid fibril formation
    Pellarin, Riccardo
    Guarnera, Enrico
    Caflisch, Amedeo
    JOURNAL OF MOLECULAR BIOLOGY, 2007, 374 (04) : 917 - 924
  • [32] Sequence determinants of amyloid fibril formation
    de la Paz, ML
    Serrano, L
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2004, 101 (01) : 87 - 92
  • [33] Kinetic analysis of amyloid fibril formation
    Naiki, H
    Gejyo, F
    AMYLOID, PRIONS, AND OTHER PROTEIN AGGREGATES, 1999, 309 : 305 - 318
  • [34] THE ROLE OF MICROGLIA IN AMYLOID FIBRIL FORMATION
    WISNIEWSKI, HM
    WEGIEL, J
    NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY, 1994, 20 (02) : 192 - 194
  • [35] Amyloid fibril formation by a helical cytochrome
    Pertinhez, TA
    Bouchard, ML
    Tomlinson, EJ
    Wain, R
    Ferguson, SJ
    Dobson, CM
    Smith, LJ
    FEBS LETTERS, 2001, 495 (03) : 184 - 186
  • [36] A catalytic surface for amyloid fibril formation
    Hammarstrom, Per
    Ali, Malik M.
    Mishra, Rajesh
    Svensson, Samuel
    Tengvall, Pentti
    Lundstrom, Ingemar
    PROCEEDINGS OF THE 17TH INTERNATIONAL VACUUM CONGRESS/13TH INTERNATIONAL CONFERENCE ON SURFACE SCIENCE/INTERNATIONAL CONFERENCE ON NANOSCIENCE AND TECHNOLOGY, 2008, 100
  • [37] Apolipoproteins and amyloid fibril formation in atherosclerosis
    Teoh, Chai Lean
    Griffin, Michael D. W.
    Howlett, Geoffrey J.
    PROTEIN & CELL, 2011, 2 (02) : 116 - 127
  • [38] New Mechanism of Amyloid Fibril Formation
    Galzitskaya, Oxana
    CURRENT PROTEIN & PEPTIDE SCIENCE, 2019, 20 (06) : 630 - 640
  • [39] Neuropathology by amyloid fibril formation.
    Gurel, D
    Gurel, O
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2002, 223 : A94 - A94
  • [40] Inhibitory effects of synthetic fisetin analogs on fibril formation of amyloid β protein
    Abe, Kazuho
    Ushikubo, Hiroko
    Watanabe, Sayaka
    Hiza, Aiki
    Ogawa, Takahiro
    Asakawa, Tomohiro
    Kan, Toshiyuki
    Akaishi, Tatsuhiro
    JOURNAL OF PHARMACOLOGICAL SCIENCES, 2011, 115 : 246P - 246P