Twisted pre-Lie algebras of finite topological spaces

被引:4
|
作者
Ayadi, Mohamed [1 ,2 ]
机构
[1] Univ Clermont Auvergne, Lab Math Blaise Pascal, CNRS, 3 Pl Vasarely,CS 60026, F-63178 Aubiere, France
[2] Univ Sfax, Fac Sci Sfax, LAMHA, Sfax, Tunisia
关键词
Bialgebras; bimonoids; finite topological spaces; Hopf algebras; species; DESCENT ALGEBRAS; HOPF ALGEBRA;
D O I
10.1080/00927872.2021.1999461
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we first study the species of finite topological spaces recently considered by Fauvet, Foissy, and Manchon. Then, we construct a twisted pre-Lie structure on the species of connected finite topological spaces. The underlying pre-Lie structure defines a coproduct on the species of finite topological spaces different from those already defined by the authors above. In the end, we illustrate the link between the Grossman-Larson product and the proposed coproduct.
引用
收藏
页码:2115 / 2138
页数:24
相关论文
共 50 条
  • [41] Weighted infinitesimal unitary bialgebras, pre-Lie, matrix algebras, and polynomial algebras
    Zhang, Yi
    Zheng, Jia-Wen
    Luo, Yan-Feng
    COMMUNICATIONS IN ALGEBRA, 2019, 47 (12) : 5164 - 5181
  • [42] On the passage from finite braces to pre-Lie rings
    Smoktunowicz, Agata
    ADVANCES IN MATHEMATICS, 2022, 409
  • [43] Poincare-Birkhoff-Witt Theorem for Pre-Lie and Post-Lie Algebras
    Gubarev, Vsevolod
    JOURNAL OF LIE THEORY, 2020, 30 (01) : 223 - 238
  • [44] Matching Rota-Baxter algebras, matching dendriform algebras and matching pre-Lie algebras
    Zhang, Yi
    Gao, Xing
    Guo, Li
    JOURNAL OF ALGEBRA, 2020, 552 : 134 - 170
  • [45] Classification of some simple graded pre-Lie algebras of growth one
    Chapoton, F
    COMMUNICATIONS IN ALGEBRA, 2004, 32 (01) : 243 - 251
  • [46] Algebraic structures of F-manifolds via pre-Lie algebras
    Dotsenko, Vladimir
    ANNALI DI MATEMATICA PURA ED APPLICATA, 2019, 198 (02) : 517 - 527
  • [47] Algebraic structures of F-manifolds via pre-Lie algebras
    Vladimir Dotsenko
    Annali di Matematica Pura ed Applicata (1923 -), 2019, 198 : 517 - 527
  • [48] Matching Hom-Setting of Rota-Baxter Algebras, Dendriform Algebras, and Pre-Lie Algebras
    Chen, Dan
    Peng, Xiao-Song
    Zargeh, Chia
    Zhang, Yi
    ADVANCES IN MATHEMATICAL PHYSICS, 2020, 2020
  • [49] PRE-LIE LAWS IN INTERACTION
    Manchon, Dominique
    Saidi, Abdellatif
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (10) : 3662 - 3680
  • [50] PRE-LIE DEFORMATION THEORY
    Dotsenko, Vladimir
    Shadrin, Sergey
    Vallette, Bruno
    MOSCOW MATHEMATICAL JOURNAL, 2016, 16 (03) : 505 - 543