A Combined Approach for Multi-Label Text Data Classification

被引:1
|
作者
Strimaitis, Rokas [1 ]
Stefanovic, Pavel [1 ]
Ramanauskaite, Simona [2 ]
Slotkiene, Asta [1 ]
机构
[1] Vilnius Gediminas Tech Univ, Dept Informat Syst, Sauletekio Al 11, LT-10223 Vilnius, Lithuania
[2] Vilnius Gediminas Tech Univ, Dept Informat Technol, Sauletekio Al 11, LT-10223 Vilnius, Lithuania
关键词
Analysis solution - Automated data analysis - Data classification - Data items - Multi-labels - Multilabel - Multinomial naive bayes - Similarity measure - Text analysis - Text data;
D O I
10.1155/2022/3369703
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Automated data analysis solutions are very dependent on data and its quality. The possibility of assigning more than one class to the same data item is one of the specificities that need to be taken into account. There are no solutions, dedicated to Lithuanian text data classification that helps to assign more than one class to data item. In this paper, a new combined approach has been proposed for multilabel text data classification for text analysis. The main aim of the proposed approach is to improve the accuracy of traditional classification algorithms by incorporating the results obtained using similarity measures. The experimental investigation has been performed using the financial news multilabel text data in the Lithuanian language. Data have been collected from four public websites and classified by experts into ten classes manually, where each of the data items has no more than two classes. The results of five commonly used algorithms have been compared for dataset classification: the support vector machine, multinomial naive Bayes, k-nearest neighbours, decision trees, linear and discriminant analysis. In addition, two similarity measures have been compared: the cosine distance and the dice coefficient. Research has shown that the best results have been obtained using the cosine similarity distance and the multinomial naive Bayes classifier. The proposed approach combines the results of these two methods. Research on different cases of the proposed approach indicated the peculiarities of its application. At the same time, the combined approach allowed us to obtain a statistically significant increase in global accuracy.
引用
收藏
页数:13
相关论文
共 50 条
  • [11] Multi-label Classification of Legislative Text into EuroVoc
    Boella, Guido
    Di Caro, Luigi
    Lesmo, Leonardo
    Daniele, Rispoli
    Robaldo, Livio
    LEGAL KNOWLEDGE AND INFORMATION SYSTEMS (JURIX 2012), 2012, 250 : 21 - 30
  • [12] Multi-Label Arabic Text Classification: An Overview
    Aljedani, Nawal
    Alotaibi, Reem
    Taileb, Mounira
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2020, 11 (10) : 694 - 706
  • [13] Multi-label arabic text classification: an overview
    Aljedani N.
    Alotaibi R.
    Taileb M.
    International Journal of Advanced Computer Science and Applications, 2020, 11 (10): : 694 - 706
  • [14] Multi-Label Emotion Classification of Online Learners' Reviews Using Machine Learning Text-Based Multi-Label Classification Approach
    Makhoukhi, Hajar
    Roubi, Sarra
    2024 5TH INTERNATIONAL CONFERENCE ON EDUCATION DEVELOPMENT AND STUDIES, ICEDS 2024, 2024, : 59 - 64
  • [15] Multi-Label Text Classification Based on DistilBERT and Label Correlation
    Wang, Xuyang
    Geng, Liuqing
    Zhang, Xin
    Computer Engineering and Applications, 2024, 60 (23) : 168 - 175
  • [16] Multi-label Classification of Legal Text with Fusion of Label Relations
    Song Z.
    Li Y.
    Li D.
    Wang S.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2022, 35 (02): : 185 - 192
  • [17] MULTI-LABEL TEXT CLASSIFICATION WITH A ROBUST LABEL DEPENDENT REPRESENTATION
    Alfaro, Rodrigo
    Allende, Hector
    2011 INTERNATIONAL CONFERENCE ON INSTRUMENTATION, MEASUREMENT, CIRCUITS AND SYSTEMS (ICIMCS 2011), VOL 3: COMPUTER-AIDED DESIGN, MANUFACTURING AND MANAGEMENT, 2011, : 211 - 214
  • [18] A Label Information Aware Model for Multi-label Text Classification
    Tian, Xiaoyu
    Qin, Yongbin
    Huang, Ruizhang
    Chen, Yanping
    Neural Processing Letters, 2024, 56 (05)
  • [19] A New multi-instance multi-label learning approach for image and text classification
    Yan, Kaobi
    Li, Zhixin
    Zhang, Canlong
    MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (13) : 7875 - 7890
  • [20] A New multi-instance multi-label learning approach for image and text classification
    Kaobi Yan
    Zhixin Li
    Canlong Zhang
    Multimedia Tools and Applications, 2016, 75 : 7875 - 7890