Distributions of elements on nilpotent varieties of groups

被引:0
|
作者
Timoshenko, E. I. [1 ]
机构
[1] Novosibirsk State Tech Univ, Novosibirsk, Russia
基金
俄罗斯基础研究基金会;
关键词
variety of groups; nilpotent groups; equations in groups; distributions of elements; SYSTEMS;
D O I
10.1070/SM2015v206n03ABEH004465
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let be some variety of groups, and F-n(m) a free group in M with a basis {x(1),...,x(n)}. Two elements u(x(1),...,x(n)) and v(x(1),...,x(n)) of this group induce the same distributions on m if for any finite group G is an element of m and any element g is an element of G the equations u(x(1),...,x(n)) = g and v(x(1),..., x(n)) = g have the same number of solutions in G(n). It is proved that two elements of the derived subgroup of a free group of the variety of nilpotent groups of class at most 2 induce the same distributions on this variety if and only if these elements can be transformed into each other by automorphisms, but this is not true for elements that do not belong to the derived subgroup.
引用
收藏
页码:470 / 479
页数:10
相关论文
共 50 条
  • [31] Groups satisfying semigroup laws, and nilpotent-by-Burnside varieties
    Burns, RG
    Macedonska, O
    Medvedev, Y
    JOURNAL OF ALGEBRA, 1997, 195 (02) : 510 - 525
  • [32] Literal Varieties of Languages Induced by Homomorphisms onto Nilpotent Groups
    Klima, Ondrej
    Polak, Libor
    LANGUAGE AND AUTOMATA THEORY AND APPLICATIONS, 2008, 5196 : 299 - 310
  • [33] Nilpotent varieties and metabelian varieties
    Valenti, Angela
    Mishchenko, Sergey
    TURKISH JOURNAL OF MATHEMATICS, 2022, 46 (05) : 2023 - 2033
  • [34] Nilpotent varieties and metabelian varieties
    Valenti, Angela
    Mishchenko, Sergey
    TURKISH JOURNAL OF MATHEMATICS, 2022,
  • [35] Actions of nilpotent groups on nilpotent groups
    Burkhart, Michael C.
    GLASGOW MATHEMATICAL JOURNAL, 2025,
  • [36] LIMIT THEOREMS FOR COMPOSITIONS OF DISTRIBUTIONS ON SOME NILPOTENT LIE GROUPS
    VIRTSER, AD
    TEORIYA VEROYATNOSTEI I YEYE PRIMENIYA, 1974, 19 (01): : 84 - 103
  • [37] Existence of Affine Pavings for Varieties of Partial Flags Associated to Nilpotent Elements
    Fresse, Lucas
    INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2016, 2016 (02) : 418 - 472
  • [38] Varieties of nilpotent elements for simple Lie algebras I: Good primes
    Benson, DJ
    Bergonio, P
    Boe, BD
    Chastkofsky, L
    Cooper, B
    Guy, GM
    Hyun, JJ
    Jungster, J
    Matthews, G
    Mazza, N
    Nakano, DK
    Platt, K
    JOURNAL OF ALGEBRA, 2004, 280 (02) : 719 - 737
  • [39] Varieties of nilpotent elements for simple Lie algebras II: Bad primes
    Benson, DJ
    Bergonio, P
    Boe, BD
    Chastkofsky, L
    Cooper, B
    Guy, GM
    Hower, J
    Hunziker, M
    Hyun, JJ
    Kujawa, J
    Matthews, G
    Mazza, N
    Nakano, DK
    Platt, K
    Wright, C
    JOURNAL OF ALGEBRA, 2005, 292 (01) : 65 - 99
  • [40] DENSE SUBCLASSES IN SOME VARIETIES OF 2-STEP NILPOTENT GROUPS
    BELETSKII, PM
    MATHEMATICS OF THE USSR-SBORNIK, 1983, 122 (3-4): : 369 - 385