TPU nanocomposites tailored by graphene nanoplatelets: the investigation of dispersion approaches and annealing treatment on thermal and mechanical properties

被引:10
|
作者
Albozahid, Muayad [1 ]
Naji, Haneen Zuhair [2 ]
Alobad, Zoalfokkar Kareem [3 ]
Saiani, Alberto [4 ]
机构
[1] Univ Kufa, Fac Engn, Dept Mat Engn, Najaf, Iraq
[2] Univ Babylon, Fac Engn, Dept Chem Engn, Hilla, Iraq
[3] Univ Babylon, Fac Mat Engn, Dept Polymers Engn & Petrochem Ind, Hilla, Iraq
[4] Univ Manchester, Sch Nat Sci, Dept Mat, Manchester M13 9PL, Lancs, England
关键词
TPU; Thermoplastic polyurethane; DMA; DSC; SEM morphology; Tensile test; MULTIPLE MELTING ENDOTHERMS; BLOCK CONTENT POLYURETHANE; RIGID AMORPHOUS FRACTION; IMPROVED GAS BARRIER; HARD SEGMENT LENGTH; FUNCTIONALIZED GRAPHENE; MICROPHASE SEPARATION; PHYSICAL-PROPERTIES; DIELECTRIC-PROPERTIES; CARBON NANOTUBES;
D O I
10.1007/s00289-021-03898-1
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
The present work investigates the combined effect of the addition of graphene nanoplatelets (GNPs) to the thermoplastic polyurethane copolymer (TPU) and thermal treatment evaluation of the resultant TPU/GNP nanocomposite. Thus, this factor can be evaluated through a variety of dynamic mechanical and thermal measurements. The TPUs as nanocomposites were synthesised by three different approaches of mixing (in situ polymerisation melt compounding and solution mixing) with different weight ratios. Various dispersion processes were employed to obtain better dispersed GNP and thus strong interaction, leading to an effective performance of the TPU/GNP system. X-Ray diffraction and Raman spectroscopy tests displayed the inter-spacing planar quality of GNP nanofillers. Dynamic mechanical analysis revealed that the storage modulus (EMODIFIER LETTER PRIME) of TPU nanocomposites how a significant performance particularly at 20 wt.%, 10 wt.% and 5 wt.% of GNP for in situ polymerisation melt compounding and solution mixing, respectively. The microphase-separated structure of TPU nanocomposite samples after thermal treatment (at 80 degrees C for 4 days) was investigated from for all dispersion methods. Consequently, the overall TPU crystallinity decreased after thermal treatment compared with untreated samples, presuming an ordering suppression of hard segments that involved with GNP. Dispersion and interaction of GNP can play a crucial role in enhancing the thermal and mechanical properties, and thus, a significant improvement for TPU nanocomposites. The tensile test showed significant enhancement with GNP incorporation before thermal treatment. On the contrary, a deterioration in tensile modulus and tensile strength resulted from thermal treatment. A modified Halpin-Tsai model was utilised to predict the mismatch between the empirical and theoretical results. It found a clear diversity in modulus of TPU/GNP samples, in particular at greater GNP content.
引用
收藏
页码:8269 / 8307
页数:39
相关论文
共 50 条
  • [41] Enhanced mechanical and thermal properties of graphene nanoplatelets-reinforced polyamide11/poly(lactic acid) nanocomposites
    Durmaz, Bedriye Ucpinar
    Aytac, Ayse
    POLYMER ENGINEERING AND SCIENCE, 2023, 63 (01): : 105 - 117
  • [42] Investigation of thermal conductivity and rheological properties of nanofluids containing graphene nanoplatelets
    Mohammad Mehrali
    Emad Sadeghinezhad
    Sara Tahan Latibari
    Salim Newaz Kazi
    Mehdi Mehrali
    Mohd Nashrul Bin Mohd Zubir
    Hendrik Simon Cornelis Metselaar
    Nanoscale Research Letters, 9
  • [43] Size effects of graphene nanoplatelets on the properties of high-density polyethylene nanocomposites: morphological, thermal, electrical, and mechanical characterization
    Evgin, Tuba
    Turgut, Alpaslan
    Hamaoui, Georges
    Spitalsky, Zdenko
    Horny, Nicolas
    Micusik, Matej
    Chirtoc, Mihai
    Sarikanat, Mehmet
    Omastova, Maria
    BEILSTEIN JOURNAL OF NANOTECHNOLOGY, 2020, 11 : 167 - 179
  • [44] Dispersion Characteristics, the Mechanical, Thermal Stability, and Durability Properties of Epoxy Nanocomposites Reinforced with Carbon Nanotubes, Graphene, or Graphene Oxide
    Mirzapour, Miraidin
    Cousin, Patrice
    Robert, Mathieu
    Benmokrane, Brahim
    POLYMERS, 2024, 16 (13)
  • [45] Influence of surfactant type on the dispersion state and properties of graphene nanoplatelets reinforced aluminium matrix nanocomposites
    Baig, Zeeshan
    Mamat, Othman
    Mustapha, Mazli
    Sarfraz, Mansoor
    FULLERENES NANOTUBES AND CARBON NANOSTRUCTURES, 2017, 25 (09) : 545 - 557
  • [46] Enhancing the mechanical, conductive, and chemical resistance properties of SEBS nanocomposites using graphene nanoplatelets
    Li, Shuangshan
    Liu, Xinyu
    Yang, Zeyu
    Han, Sensen
    Gu, Haicheng
    Chu, Liyang
    Meng, Qingshi
    POLYMER COMPOSITES, 2025,
  • [47] An Overview of Metal Matrix Nanocomposites Reinforced with Graphene Nanoplatelets; Mechanical, Electrical and Thermophysical Properties
    Saboori, Abdollah
    Dadkhah, Mehran
    Fino, Paolo
    Pavese, Matteo
    METALS, 2018, 8 (06)
  • [48] Comparison to mechanical properties of epoxy nanocomposites reinforced by functionalized carbon nanotubes and graphene nanoplatelets
    Cha, Jaemin
    Kim, Joonhui
    Ryu, Seongwoo
    Hong, Soon H.
    COMPOSITES PART B-ENGINEERING, 2019, 162 : 283 - 288
  • [49] Effect of Graphene Nanosheets (GNS) and Graphite Nanoplatelets (GNP) on the Mechanical Properties of Epoxy Nanocomposites
    Shokrieh, M. M.
    Esmkhani, M.
    Shahverdi, H. R.
    Vahedi, F.
    SCIENCE OF ADVANCED MATERIALS, 2013, 5 (03) : 260 - 266
  • [50] Mechanical properties of graphene nanoplatelets-reinforced concrete prepared with different dispersion techniques
    Jiang, Zhangfan
    Sevim, Ozer
    Ozbulut, Osman E.
    CONSTRUCTION AND BUILDING MATERIALS, 2021, 303 (303)