Complexity of Tiling a Polygon with Trominoes or Bars

被引:8
|
作者
Horiyama, Takashi [1 ]
Ito, Takehiro [2 ,3 ]
Nakatsuka, Keita [4 ]
Suzuki, Akira [2 ,3 ]
Uehara, Ryuhei [5 ]
机构
[1] Saitama Univ, Grad Sch Sci & Engn, 255 Shimo Okubo, Sakura, Saitama 3388570, Japan
[2] Tohoku Univ, Grad Sch Informat Sci, Aoba Ku, 6-6-05 Aramaki Aza Aoba, Sendai, Miyagi 9808579, Japan
[3] JST, CREST, 4-1-8 Honcho, Kawaguchi, Saitama 3320012, Japan
[4] Saitama Univ, Fac Engn, 255 Shimo Okubo, Sakura, Saitama 3388570, Japan
[5] JAIST, Sch Informat Sci, 1-1 Asahidai, Nomi, Ishikawa 9231292, Japan
关键词
Tiling problem; Polyominoes; NP-complete; #P-complete; ASP-complete; RECTANGLES; PLANE;
D O I
10.1007/s00454-017-9884-9
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study the computational hardness of the tiling puzzle with polyominoes, where a polyomino is a right-angled polygon (i.e., a polygon made by connecting unit squares along their edges). In the tiling problem, we are given a right-angled polygon P and a set S of polyominoes, and asked whether P can be covered without any overlap using translated copies of polyominoes in S. In this paper, we focus on trominoes and bars as polyominoes; a tromino is a polyomino consisting of three unit squares, and a bar is a rectangle of either height one or width one. Notice that there are essentially two shapes of trominoes, that is, I-shape (i.e., a bar) and L-shape. We consider the tiling problem when restricted to only L-shape trominoes, only I-shape trominoes, both L-shape and I-shape trominoes, or only two bars. In this paper, we prove that the tiling problem remains NP-complete even for such restricted sets of polyominoes. All reductions are carefully designed so that we can also prove the # P-completeness and ASP-completeness of the counting and the another-solution-problem variants, respectively. Our results answer two open questions proposed by Moore and Robson (Discrete Comput Geom 26:573-590, 2001) and Pak and Yang (J Comb Theory 120:1804-1816, 2013).
引用
收藏
页码:686 / 704
页数:19
相关论文
共 50 条
  • [1] Complexity of Tiling a Polygon with Trominoes or Bars
    Takashi Horiyama
    Takehiro Ito
    Keita Nakatsuka
    Akira Suzuki
    Ryuhei Uehara
    [J]. Discrete & Computational Geometry, 2017, 58 : 686 - 704
  • [2] TILING BY TROMINOES
    ISAACSON, EL
    PENNER, S
    BRIGHAM, R
    DECARLO, J
    FOREGGER, T
    GOLDBERG, M
    GOULD, W
    HODGE, K
    JOHNSTON, E
    LEVY, J
    LOCKE, S
    MEYEROWITZ, A
    TABORIN, Z
    VALK, GW
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1977, 84 (08): : 656 - 657
  • [3] Parity and tiling by trominoes
    Reid, Michael
    [J]. AUSTRALASIAN JOURNAL OF COMBINATORICS, 2008, 40 : 115 - 136
  • [4] Tiling rectangles with trominoes
    Woltermann, M
    [J]. AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (02): : 179 - 179
  • [5] TILING A POLYGON WITH PARALLELOGRAMS
    KENYON, R
    [J]. ALGORITHMICA, 1993, 9 (04) : 382 - 397
  • [6] TILING POLYGONS WITH BARS
    KENYON, C
    KENYON, R
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (12): : 1319 - 1322
  • [7] Tiling a Polygon with Two Kinds of Rectangles
    Eric Rémila
    [J]. Discrete & Computational Geometry, 2005, 34 : 313 - 330
  • [8] Tiling a polygon with two kinds of rectangles
    Rémila, E
    [J]. ALGORITHMS ESA 2004, PROCEEDINGS, 2004, 3221 : 568 - 579
  • [9] Tiling a polygon with two kinds of rectangles
    Rémila, E
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2005, 34 (02) : 313 - 330
  • [10] ON THE TILING OF A TORUS WITH 2 BARS
    REMILA, E
    [J]. THEORETICAL COMPUTER SCIENCE, 1994, 134 (02) : 415 - 426