ON THE TILING OF A TORUS WITH 2 BARS

被引:1
|
作者
REMILA, E
机构
[1] LIP-IMAG, CNRS URA 1398, Ecole Normale Supérieure de Lyon, F-69364 Lyon Cédex 07
关键词
D O I
10.1016/0304-3975(94)90246-1
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We prove that, for two fixed integers m and n, the study of the tileability of a torus with h(m) (the horizontal bar of length m and width 1) and v(n) (the vertical bar of length n and width 1) can be limited to study of a finite number of cases.
引用
收藏
页码:415 / 426
页数:12
相关论文
共 50 条
  • [1] TILING FIGURES OF THE PLANE WITH 2 BARS
    BEAUQUIER, D
    NIVAT, M
    REMILA, E
    ROBSON, M
    [J]. COMPUTATIONAL GEOMETRY-THEORY AND APPLICATIONS, 1995, 5 (01): : 1 - 25
  • [2] TILING POLYGONS WITH BARS
    KENYON, C
    KENYON, R
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (12): : 1319 - 1322
  • [3] Tiling a simply connected figure with bars of length 2 or 3
    Remila, E
    [J]. DISCRETE MATHEMATICS, 1996, 160 (1-3) : 189 - 198
  • [4] Tiling with bars under tomographic constraints
    Dürr, C
    Goles, E
    Rapaport, I
    Rémila, E
    [J]. THEORETICAL COMPUTER SCIENCE, 2003, 290 (03) : 1317 - 1329
  • [5] Complexity of Tiling a Polygon with Trominoes or Bars
    Horiyama, Takashi
    Ito, Takehiro
    Nakatsuka, Keita
    Suzuki, Akira
    Uehara, Ryuhei
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 2017, 58 (03) : 686 - 704
  • [6] Tiling with bars and satisfaction of Boolean formulas
    Remila, E
    [J]. EUROPEAN JOURNAL OF COMBINATORICS, 1996, 17 (05) : 485 - 491
  • [7] Complexity of Tiling a Polygon with Trominoes or Bars
    Takashi Horiyama
    Takehiro Ito
    Keita Nakatsuka
    Akira Suzuki
    Ryuhei Uehara
    [J]. Discrete & Computational Geometry, 2017, 58 : 686 - 704
  • [8] TILING THE TORUS AND OTHER SPACE-FORMS
    SENECHAL, M
    [J]. DISCRETE & COMPUTATIONAL GEOMETRY, 1988, 3 (01) : 55 - 72
  • [9] ON THE TILING OF TORUS T(AXB) WITH H(M) AND V(N)
    REMILA, E
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1993, 316 (09): : 949 - 952
  • [10] Tiling the solid torus, the 3-cube and the 3-sphere with congruent knotted tori
    Kuperberg, W
    [J]. INTUITIVE GEOMETRY, 1997, 6 : 399 - 406