Data-Driven Model Predictive Control Method for Wind Farms to Provide Frequency Support

被引:30
|
作者
Guo, Zizhen [1 ]
Wu, Wenchuan [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, State Key Lab Power Syst, Beijing 100084, Peoples R China
关键词
Wind turbines; Wind farms; Frequency control; Doubly fed induction generators; Rotors; Wind speed; Wind power generation; Wind farm; frequency regulation; data-driven; koopman operator; nonlinear dynamic system; KOOPMAN OPERATOR; SYSTEMS; SPEED;
D O I
10.1109/TEC.2021.3125369
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
As the wind power penetration increases, wind farms are required by the grid codes to provide frequency regulation services. This article develops a fully data-driven model predictive control (DMPC) scheme for the wind farm to provide temporal frequency support. The main technical challenge is the complexity and the nonlinearity of wind turbine dynamics that make the DMPC intractable. Based on Koopman operator (KO) theory, a specialized dynamic mode decomposition (SDMD) algorithm is proposed, which fits a global linear dynamic model of the wind turbines. The performance of learning dynamics is powered through integrating the physical knowledge of the wind turbine into the specialized observables of KO. To stabilize the rotor speeds in frequency regulation, the active power contribution is optimally dispatched in a moving horizon fashion. Simulation results show that the DMPC can efficiently learn and predict the wind turbine dynamics. During the frequency response process, the proposed method can effectively track the frequency support order specified by the utility grid operator while significantly stabilizing the rotor speeds.
引用
收藏
页码:1304 / 1313
页数:10
相关论文
共 50 条
  • [31] Synthesis of model predictive control based on data-driven learning
    Yuanqiang Zhou
    Dewei Li
    Yugeng Xi
    Zhongxue Gan
    Science China Information Sciences, 2020, 63
  • [32] Data-driven model predictive control for precision irrigation management
    Bwambale, Erion
    Abagale, Felix K.
    Anornu, Geophrey K.
    SMART AGRICULTURAL TECHNOLOGY, 2023, 3
  • [33] A data-driven approach for model predictive control performance monitoring
    Zhang, Guang-Ming
    Li, Ning
    Li, Shao-Yuan
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2011, 45 (08): : 1113 - 1118
  • [34] Data-Driven Optimization Framework for Nonlinear Model Predictive Control
    Zhang, Shiliang
    Cao, Hui
    Zhang, Yanbin
    Jia, Lixin
    Ye, Zonglin
    Hei, Xiali
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2017, 2017
  • [35] Data-driven model predictive control for ships with Gaussian process
    Xu, Peilong
    Qin, Hongde
    Ma, Jingran
    Deng, Zhongchao
    Xue, Yifan
    OCEAN ENGINEERING, 2023, 268
  • [36] Data-Driven Incremental Model Predictive Control for Robot Manipulators
    Wang, Yongchao
    Zhou, Yuhang
    Liu, Fangzhou
    Leibold, Marion
    Buss, Martin
    IEEE-ASME TRANSACTIONS ON MECHATRONICS, 2024,
  • [37] Data-driven Model Predictive Control for Drop Foot Correction
    Singh, Mayank
    Sharma, Nitin
    2023 AMERICAN CONTROL CONFERENCE, ACC, 2023, : 2615 - 2620
  • [38] Synthesis of model predictive control based on data-driven learning
    Yuanqiang ZHOU
    Dewei LI
    Yugeng XI
    Zhongxue GAN
    ScienceChina(InformationSciences), 2020, 63 (08) : 251 - 253
  • [39] Data-driven Switched Affine Modeling for Model Predictive Control
    Smarra, Francesco
    Jain, Achin
    Mangharam, Rahul
    D'Innocenzo, Alessandro
    IFAC PAPERSONLINE, 2018, 51 (16): : 199 - 204
  • [40] A General Equivalent Modeling Method for DFIG Wind Farms Based on Data-Driven Modeling
    Zhu, Qianlong
    Tao, Jun
    Deng, Tianbai
    Zhu, Mingxing
    ENERGIES, 2022, 15 (19)