Self-scaling of turbulent energy dissipation correlators

被引:7
|
作者
Schmiegel, H [1 ]
机构
[1] Aarhus Univ, Dept Math Sci, DK-8000 Aarhus, Denmark
关键词
turbulence; levy bases; correlations; scaling;
D O I
10.1016/j.physleta.2005.01.077
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In a number of recent papers [J. Schmiegel, Ph.D. Thesis, TU Dresden, 2002], [http://www.maphysto.dk], [Usp. Mat. Nauk 159 (2004) 63], [Phys. Lett. A 320 (2004) 247], a continuous spatio-temporal process based on the integration of Levy bases was proposed to describe the statistics of the turbulent energy dissipation. An immediate consequence of this model is self-scaling of dissipation correlators, similar to the concept of extended self similarity (ESS) for velocity increments. We report empirical findings about self-scaling of dissipation correlators that support the Levy based dynamical modeling of the energy dissipation. (c) 2005 Elsevier B.V. All rights reserved.
引用
收藏
页码:342 / 353
页数:12
相关论文
共 50 条
  • [41] New Self-scaling Quasi-Newton methods for unconstrained optimization
    Moghrabi, Issam A. R.
    Hassan, Basim A.
    Askar, Aadil
    INTERNATIONAL JOURNAL OF MATHEMATICS AND COMPUTER SCIENCE, 2022, 17 (03): : 1061 - 1077
  • [42] Dissipation scaling and structural order in turbulent channel flows
    Lee, T-W
    PHYSICS OF FLUIDS, 2021, 33 (05)
  • [43] Numerical experience with a class of self-scaling quasi-Newton algorithms
    Al-Baali, M
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 1998, 96 (03) : 533 - 553
  • [44] Size self-scaling effect in stacked InAs/InAlAs nanowire multilayers
    Sun, ZZ
    Yoon, SF
    Wu, J
    Wang, ZG
    APPLIED PHYSICS LETTERS, 2004, 85 (21) : 5061 - 5063
  • [45] Scaling and spatial intermittency of thermal dissipation in turbulent convection
    Bhattacharya, Shashwat
    Samtaney, Ravi
    Verma, Mahendra K.
    PHYSICS OF FLUIDS, 2019, 31 (07)
  • [46] Dissipation scaling in the transition region of turbulent mixing layer
    Takamure, K.
    Sakai, Y.
    Ito, Y.
    Iwano, K.
    Hayase, T.
    INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2019, 75 : 77 - 85
  • [47] A double parameter self-scaling memoryless BFGS method for unconstrained optimization
    Neculai Andrei
    Computational and Applied Mathematics, 2020, 39
  • [48] Numerical Experience with a Class of Self-Scaling Quasi-Newton Algorithms
    M. Al-Baali
    Journal of Optimization Theory and Applications, 1998, 96 : 533 - 553
  • [49] A combined class of self-scaling and modified quasi-Newton methods
    Al-Baali, Mehiddin
    Khalfan, Humaid
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2012, 52 (02) : 393 - 408
  • [50] A double parameter self-scaling memoryless BFGS method for unconstrained optimization
    Andrei, Neculai
    COMPUTATIONAL & APPLIED MATHEMATICS, 2020, 39 (03):