Effect of depolarization field on steep switching characteristics in negative capacitance field effect transistors

被引:4
|
作者
Xiao, Yongguang [1 ,2 ]
Tan, Fengqian [1 ,2 ]
Yan, Luo [1 ,2 ]
Li, Gang [1 ,2 ]
Tang, Minghua [1 ,2 ]
Li, Zheng [1 ,2 ]
机构
[1] Xiangtan Univ, Sch Mat Sci & Engn, Key Lab Key Film Mat & Applicat Equipments Hunan, Xiangtan 411105, Hunan, Peoples R China
[2] Xiangtan Univ, Sch Mat Sci & Engn, Hunan Prov Key Lab Thin Film Mat & Devices, Xiangtan, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
metal-ferroelectric-insulator-semiconductor field effect transistors; negative capacitance; depolarizing field; steep switching; SLOPE; MODEL;
D O I
10.1088/1361-6641/ab8d48
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A theoretical model for describing the effect of depolarization field (E-d) in the negative capacitance (NC) field effect transistor (FET) was derived. Based on this model, the electrical properties of the metal-ferroelectric-insulator-semiconductor (MFIS) field effect transistor including the relationship between the depolarizing field and the gate voltage (V-g),E(d)and silicon surface potential, and the drain-source current of NC-FET andV(g)(transfer characteristics) were theoretically investigated. The computing results demonstrated that the surface potential amplification and the steep subthreshold slope characteristics happened at the gate voltage of about 0.4 V, results from the steep increase ofE(d)dependent onV(g)in the NC-FETs. It is expected that the derived results may provide some insight into the design and performance improvement for the NC-MFIS-FET.
引用
收藏
页数:7
相关论文
共 50 条
  • [41] Comparative Study of Negative Capacitance Field-Effect Transistors with Different MOS Capacitances
    Li, Jing
    Liu, Yan
    Han, Genquan
    Zhou, Jiuren
    Hao, Yue
    NANOSCALE RESEARCH LETTERS, 2019, 14 (1):
  • [42] An improved model for the surface potential and drain current in negative capacitance field effect transistors
    Xiao, Y. G.
    Ma, D. B.
    Wang, J.
    Li, G.
    Yan, S. A.
    Zhang, W. L.
    Li, Z.
    Tang, M. H.
    RSC ADVANCES, 2016, 6 (105) : 103210 - 103214
  • [43] Negative capacitance tunneling field effect transistors based on monolayer arsenene, antimonene, and bismuthene
    Li, Hong
    Xu, Peipei
    Xu, Lin
    Zhang, Zhiyong
    Lu, Jing
    SEMICONDUCTOR SCIENCE AND TECHNOLOGY, 2019, 34 (08)
  • [44] Comparative study of Negative Capacitance Field Effect Transistors with different doped hafnium oxides
    Awadhiya, Bhaskar
    Yadav, Sameer
    MICROELECTRONICS JOURNAL, 2023, 138
  • [45] A simple SPICE model for Negative Capacitance Field-Effect Transistors and its applications
    Huang, Chenglong
    Hao, Dongdong
    Fang, Liang
    CONFERENCE PROCEEDINGS OF 2018 IEEE ASIA PACIFIC CONFERENCE ON POSTGRADUATE RESEARCH IN MICROELECTRONICS AND ELECTRONICS (PRIMEASIA 2018), 2018, : 13 - 18
  • [46] Comparative Study of Negative Capacitance Field-Effect Transistors with Different MOS Capacitances
    Jing Li
    Yan Liu
    Genquan Han
    Jiuren Zhou
    Yue Hao
    Nanoscale Research Letters, 2019, 14
  • [47] Improved Temperature Resilience and Device Performance of Negative Capacitance Reconfigurable Field Effect Transistors
    Pandey, Priyanka
    Kaur, Harsupreet
    IEEE TRANSACTIONS ON ELECTRON DEVICES, 2020, 67 (02) : 738 - 744
  • [48] Negative Capacitance CMOS Field-Effect Transistors with Non-Hysteretic Steep Sub-60mV/dec Swing and Defect-Passivated Multidomain Switching
    Liu, Chien
    Chen, Hsuan-Han
    Hsu, Chih-Chieh
    Fan, Chia-Chi
    Hsu, Hsiao-Hsuan
    Cheng, Chun-Hu
    2019 SYMPOSIUM ON VLSI TECHNOLOGY, 2019, : T224 - T225
  • [49] Ferroelectric Negative Capacitance Field Effect Transistor
    Tu, Luqi
    Wang, Xudong
    Wang, Jianlu
    Meng, Xiangjian
    Chu, Junhao
    ADVANCED ELECTRONIC MATERIALS, 2018, 4 (11):
  • [50] Sub-kT/q switching in In2O3 nanowire negative capacitance field-effect transistors
    Su, Meng
    Zou, Xuming
    Gong, Youning
    Wang, Jianlu
    Liu, Yuan
    Ho, Johnny C.
    Liu, Xingqiang
    Liao, Lei
    NANOSCALE, 2018, 10 (40) : 19131 - 19139