Automated quality control in image segmentation: application to the UK Biobank cardiovascular magnetic resonance imaging study

被引:79
|
作者
Robinson, Robert [1 ]
Valindria, Vanya V. [1 ]
Bai, Wenjia [1 ]
Oktay, Ozan [1 ]
Kainz, Bernhard [1 ]
Suzuki, Hideaki [2 ]
Sanghvi, Mihir M. [4 ,5 ]
Aung, Nay [4 ,5 ]
Paiva, Jose Miguel [4 ]
Zemrak, Filip [4 ,5 ]
Fung, Kenneth [4 ,5 ]
Lukaschuk, Elena [6 ]
Lee, Aaron M. [4 ,5 ]
Carapella, Valentina [6 ]
Kim, Young Jin [6 ,7 ]
Piechnik, Stefan K. [6 ]
Neubauer, Stefan [6 ]
Petersen, Steffen E. [4 ,5 ]
Page, Chris [3 ]
Matthews, Paul M. [2 ,8 ]
Rueckert, Daniel [1 ]
Glocker, Ben [1 ]
机构
[1] Imperial Coll London, Dept Comp, Biomed Image Anal Grp, London SW7 2AZ, England
[2] Imperial Coll London, Div Brain Sci, Dept Med, London, England
[3] GlaxoSmithKline Res & Dev Ltd, Stockley Pk, Uxbridge UB11 1BT, Middx, England
[4] Queen Mary Univ London, NIHR Barts Biomed Res Ctr, William Harvey Res Inst, Charterhouse Sq, London EC1M 6BQ, England
[5] Barts Hlth NHS Trust, Barts Heart Ctr, London EC1A 7BE, England
[6] Univ Oxford, Div Cardiovasc Med, Radcliffe Dept Med, Oxford OX3 9DU, England
[7] Yonsei Univ, Severance Hosp, Dept Radiol, Coll Med, Seoul, South Korea
[8] Imperial Coll London, UK Dementia Res Inst, Queens Dr, London SW7 2AZ, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会; 英国惠康基金; 英国医学研究理事会;
关键词
Automatic quality control; Population imaging; Segmentation; VALIDATION;
D O I
10.1186/s12968-019-0523-x
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BackgroundThe trend towards large-scale studies including population imaging poses new challenges in terms of quality control (QC). This is a particular issue when automatic processing tools such as image segmentation methods are employed to derive quantitative measures or biomarkers for further analyses. Manual inspection and visual QC of each segmentation result is not feasible at large scale. However, it is important to be able to automatically detect when a segmentation method fails in order to avoid inclusion of wrong measurements into subsequent analyses which could otherwise lead to incorrect conclusions.MethodsTo overcome this challenge, we explore an approach for predicting segmentation quality based on Reverse Classification Accuracy, which enables us to discriminate between successful and failed segmentations on a per-cases basis. We validate this approach on a new, large-scale manually-annotated set of 4800 cardiovascular magnetic resonance (CMR) scans. We then apply our method to a large cohort of 7250 CMR on which we have performed manual QC.ResultsWe report results used for predicting segmentation quality metrics including Dice Similarity Coefficient (DSC) and surface-distance measures. As initial validation, we present data for 400 scans demonstrating 99% accuracy for classifying low and high quality segmentations using the predicted DSC scores. As further validation we show high correlation between real and predicted scores and 95% classification accuracy on 4800 scans for which manual segmentations were available. We mimic real-world application of the method on 7250 CMR where we show good agreement between predicted quality metrics and manual visual QC scores.ConclusionsWe show that Reverse classification accuracy has the potential for accurate and fully automatic segmentation QC on a per-case basis in the context of large-scale population imaging as in the UK Biobank Imaging Study.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Associations of Meat and Fish Consumption With Conventional and Radiomics Cardiovascular Magnetic Resonance Phenotypes in the UK Biobank
    Raisi-Estabragh, Zahra
    McCracken, Celeste
    Gkontra, Polyxeni
    Jaggi, Akshay
    Ardissino, Maddalena
    Cooper, Jackie
    Biasiolli, Luca
    Aung, Nay
    Piechnik, Stefan K.
    Neubauer, Stefan
    Munroe, Patricia B.
    Lekadir, Karim
    Harvey, Nicholas C.
    Petersen, Steffen E.
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8
  • [42] Accuracy Validation of an Automated Method for Prostate Segmentation in Magnetic Resonance Imaging
    Shahedi, Maysam
    Cool, Derek W.
    Bauman, Glenn S.
    Bastian-Jordan, Matthew
    Fenster, Aaron
    Ward, Aaron D.
    JOURNAL OF DIGITAL IMAGING, 2017, 30 (06) : 782 - 795
  • [43] Application of cardiovascular magnetic resonance imaging in patients with cardiomyopathies
    Gebker, Rolf
    Fleck, Eckart
    Nagel, Eike
    MEDIZINISCHE KLINIK, 2006, 101 (05) : 395 - +
  • [44] Automated quality control of brain magnetic resonance images
    Gedamu, Elias
    Collins, Louis C.
    Arnold, Douglas
    MULTIPLE SCLEROSIS, 2008, 14 : S105 - S105
  • [45] Automated cardiovascular magnetic resonance image analysis with fully convolutional networks
    Wenjia Bai
    Matthew Sinclair
    Giacomo Tarroni
    Ozan Oktay
    Martin Rajchl
    Ghislain Vaillant
    Aaron M. Lee
    Nay Aung
    Elena Lukaschuk
    Mihir M. Sanghvi
    Filip Zemrak
    Kenneth Fung
    Jose Miguel Paiva
    Valentina Carapella
    Young Jin Kim
    Hideaki Suzuki
    Bernhard Kainz
    Paul M. Matthews
    Steffen E. Petersen
    Stefan K. Piechnik
    Stefan Neubauer
    Ben Glocker
    Daniel Rueckert
    Journal of Cardiovascular Magnetic Resonance, 20
  • [46] Automated cardiovascular magnetic resonance image analysis with fully convolutional networks
    Bai, Wenjia
    Sinclair, Matthew
    Tarroni, Giacomo
    Oktay, Ozan
    Rajchl, Martin
    Vaillant, Ghislain
    Lee, Aaron M.
    Aung, Nay
    Lukaschuk, Elena
    Sanghvi, Mihir M.
    Zemrak, Filip
    Fung, Kenneth
    Paiva, Jose Miguel
    Carapella, Valentina
    Kim, Young Jin
    Suzuki, Hideaki
    Kainz, Bernhard
    Matthews, Paul M.
    Petersen, Steffen E.
    Piechnik, Stefan K.
    Neubauer, Stefan
    Glocker, Ben
    Rueckert, Daniel
    JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2018, 20
  • [47] Automated Quality Controlled Analysis of 2D Phase Contrast Cardiovascular Magnetic Resonance Imaging
    Chan, Emily
    O'Hanlon, Ciaran
    Marquez, Carlota Asegurado
    Petalcorin, Marwenie
    Mariscal-Harana, Jorge
    Gu, Haotian
    Kim, Raymond J.
    Judd, Robert M.
    Chowienczyk, Phil
    Schnabel, Julia A.
    Razavi, Reza
    King, Andrew P.
    Ruijsink, Bram
    Puyol-Anton, Esther
    STATISTICAL ATLASES AND COMPUTATIONAL MODELS OF THE HEART: REGULAR AND CMRXMOTION CHALLENGE PAPERS, STACOM 2022, 2022, 13593 : 101 - 111
  • [48] ASSESSMENT OF IMAGE QUALITY IN MAGNETIC-RESONANCE-IMAGING
    TODDPOKROPEK, A
    GORDON, I
    JASZCZAK, R
    BRITISH JOURNAL OF RADIOLOGY, 1986, 59 (704): : 822 - 822
  • [49] Cardiovascular magnetic resonance imaging in patients with MR-conditional devices: a UK tertiary centre experience on image quality and change in patients management
    Nauman Ahmed
    Amardeep Ghosh Dastidar
    Elisa McAlindon
    Chris B Lawton
    Daniel Augustine
    Glyn Thomas
    Edward Duncan
    Tim Cripps
    Ihab Diab
    Chiara Bucciarelli-Ducci
    Journal of Cardiovascular Magnetic Resonance, 17 (Suppl 1)
  • [50] Application of synthetic data in the training of artificial intelligence for automated quality assurance in magnetic resonance imaging
    Tracey, John
    Moss, Laura
    Ashmore, Jonathan
    MEDICAL PHYSICS, 2023, 50 (09) : 5621 - 5629