Automated quality control in image segmentation: application to the UK Biobank cardiovascular magnetic resonance imaging study

被引:79
|
作者
Robinson, Robert [1 ]
Valindria, Vanya V. [1 ]
Bai, Wenjia [1 ]
Oktay, Ozan [1 ]
Kainz, Bernhard [1 ]
Suzuki, Hideaki [2 ]
Sanghvi, Mihir M. [4 ,5 ]
Aung, Nay [4 ,5 ]
Paiva, Jose Miguel [4 ]
Zemrak, Filip [4 ,5 ]
Fung, Kenneth [4 ,5 ]
Lukaschuk, Elena [6 ]
Lee, Aaron M. [4 ,5 ]
Carapella, Valentina [6 ]
Kim, Young Jin [6 ,7 ]
Piechnik, Stefan K. [6 ]
Neubauer, Stefan [6 ]
Petersen, Steffen E. [4 ,5 ]
Page, Chris [3 ]
Matthews, Paul M. [2 ,8 ]
Rueckert, Daniel [1 ]
Glocker, Ben [1 ]
机构
[1] Imperial Coll London, Dept Comp, Biomed Image Anal Grp, London SW7 2AZ, England
[2] Imperial Coll London, Div Brain Sci, Dept Med, London, England
[3] GlaxoSmithKline Res & Dev Ltd, Stockley Pk, Uxbridge UB11 1BT, Middx, England
[4] Queen Mary Univ London, NIHR Barts Biomed Res Ctr, William Harvey Res Inst, Charterhouse Sq, London EC1M 6BQ, England
[5] Barts Hlth NHS Trust, Barts Heart Ctr, London EC1A 7BE, England
[6] Univ Oxford, Div Cardiovasc Med, Radcliffe Dept Med, Oxford OX3 9DU, England
[7] Yonsei Univ, Severance Hosp, Dept Radiol, Coll Med, Seoul, South Korea
[8] Imperial Coll London, UK Dementia Res Inst, Queens Dr, London SW7 2AZ, England
基金
欧洲研究理事会; 英国工程与自然科学研究理事会; 英国惠康基金; 英国医学研究理事会;
关键词
Automatic quality control; Population imaging; Segmentation; VALIDATION;
D O I
10.1186/s12968-019-0523-x
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
BackgroundThe trend towards large-scale studies including population imaging poses new challenges in terms of quality control (QC). This is a particular issue when automatic processing tools such as image segmentation methods are employed to derive quantitative measures or biomarkers for further analyses. Manual inspection and visual QC of each segmentation result is not feasible at large scale. However, it is important to be able to automatically detect when a segmentation method fails in order to avoid inclusion of wrong measurements into subsequent analyses which could otherwise lead to incorrect conclusions.MethodsTo overcome this challenge, we explore an approach for predicting segmentation quality based on Reverse Classification Accuracy, which enables us to discriminate between successful and failed segmentations on a per-cases basis. We validate this approach on a new, large-scale manually-annotated set of 4800 cardiovascular magnetic resonance (CMR) scans. We then apply our method to a large cohort of 7250 CMR on which we have performed manual QC.ResultsWe report results used for predicting segmentation quality metrics including Dice Similarity Coefficient (DSC) and surface-distance measures. As initial validation, we present data for 400 scans demonstrating 99% accuracy for classifying low and high quality segmentations using the predicted DSC scores. As further validation we show high correlation between real and predicted scores and 95% classification accuracy on 4800 scans for which manual segmentations were available. We mimic real-world application of the method on 7250 CMR where we show good agreement between predicted quality metrics and manual visual QC scores.ConclusionsWe show that Reverse classification accuracy has the potential for accurate and fully automatic segmentation QC on a per-case basis in the context of large-scale population imaging as in the UK Biobank Imaging Study.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Automated quality control in image segmentation: application to the UK Biobank cardiovascular magnetic resonance imaging study
    Robert Robinson
    Vanya V. Valindria
    Wenjia Bai
    Ozan Oktay
    Bernhard Kainz
    Hideaki Suzuki
    Mihir M. Sanghvi
    Nay Aung
    José Miguel Paiva
    Filip Zemrak
    Kenneth Fung
    Elena Lukaschuk
    Aaron M. Lee
    Valentina Carapella
    Young Jin Kim
    Stefan K. Piechnik
    Stefan Neubauer
    Steffen E. Petersen
    Chris Page
    Paul M. Matthews
    Daniel Rueckert
    Ben Glocker
    Journal of Cardiovascular Magnetic Resonance, 21
  • [2] Aortic Distensibility Measured by Automated Analysis of Magnetic Resonance Imaging Predicts Adverse Cardiovascular Events in UK Biobank
    Cecelja, Marina
    Ruijsink, Bram
    Puyol-Anton, Esther
    Li, Ye
    Godwin, Harriet
    King, Andrew P.
    Razavi, Reza
    Chowienczyk, Phil
    JOURNAL OF THE AMERICAN HEART ASSOCIATION, 2022, 11 (23):
  • [3] UK Biobank's cardiovascular magnetic resonance protocol
    Petersen, Steffen E.
    Matthews, Paul M.
    Francis, Jane M.
    Robson, Matthew D.
    Zemrak, Filip
    Boubertakh, Redha
    Young, Alistair A.
    Hudson, Sarah
    Weale, Peter
    Garratt, Steve
    Collins, Rory
    Piechnik, Stefan
    Neubauer, Stefan
    JOURNAL OF CARDIOVASCULAR MAGNETIC RESONANCE, 2016, 18
  • [4] UK Biobank’s cardiovascular magnetic resonance protocol
    Steffen E. Petersen
    Paul M. Matthews
    Jane M. Francis
    Matthew D. Robson
    Filip Zemrak
    Redha Boubertakh
    Alistair A. Young
    Sarah Hudson
    Peter Weale
    Steve Garratt
    Rory Collins
    Stefan Piechnik
    Stefan Neubauer
    Journal of Cardiovascular Magnetic Resonance, 18
  • [5] Cardiovascular magnetic resonance imaging the UK Biobank: a major international heath research resource
    Raisi-Estabragh, Zahra
    Harvey, Nicholas C.
    Neubauer, Stefan
    Petersen, Steffen E.
    EUROPEAN HEART JOURNAL-CARDIOVASCULAR IMAGING, 2021, 22 (03) : 251 - 258
  • [6] Automated Quality-Controlled Cardiovascular Magnetic Resonance Pericardial Fat Quantification Using a Convolutional Neural Network in the UK Biobank
    Bard, Andrew
    Raisi-Estabragh, Zahra
    Ardissino, Maddalena
    Lee, Aaron Mark
    Pugliese, Francesca
    Dey, Damini
    Sarkar, Sandip
    Munroe, Patricia B.
    Neubauer, Stefan
    Harvey, Nicholas C.
    Petersen, Steffen E.
    FRONTIERS IN CARDIOVASCULAR MEDICINE, 2021, 8
  • [7] THE EFFECT OF ABDOMINAL OBESITY ON CARDIOVASCULAR FUNCTION AND DISEASE: A POPULATION BASED MAGNETIC RESONANCE IMAGING STUDY OF THE UK BIOBANK
    Van Hout, Max Johan Pieter
    Dekkers, Ilona A.
    Westenberg, Jos J. M.
    Schalij, Martin
    Scholte, Arthur
    Lamb, Hildo
    JOURNAL OF THE AMERICAN COLLEGE OF CARDIOLOGY, 2019, 73 (09) : 1460 - 1460
  • [8] Novel cardiovascular magnetic resonance imaging heterogeneity biomarkers to diagnose and predict cardiovascular disease: a UK Biobank CMR strain study
    Hesse, K.
    Khanji, M.
    Aung, N.
    Chahal, A.
    Petersen, S.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [9] Novel cardiovascular magnetic resonance imaging heterogeneity biomarkers to diagnose and predict cardiovascular disease: a UK Biobank CMR strain study
    Hesse, K.
    Khanji, M.
    Aung, N.
    Chahal, A.
    Petersen, S.
    EUROPEAN HEART JOURNAL, 2024, 45
  • [10] Deep Learning-Based Automated Abdominal Organ Segmentation in the UK Biobank and German National Cohort Magnetic Resonance Imaging Studies
    Kart, Turkay
    Fischer, Marc
    Kuestner, Thomas
    Hepp, Tobias
    Bamberg, Fabian
    Winzeck, Stefan
    Glocker, Ben
    Rueckert, Daniel
    Gatidis, Sergios
    INVESTIGATIVE RADIOLOGY, 2021, 56 (06) : 401 - 408