A fast time-domain finite element-boundary integral method for electromagnetic analysis

被引:47
|
作者
Jiao, D [1 ]
Lu, MY [1 ]
Michielssen, E [1 ]
Jin, JM [1 ]
机构
[1] Univ Illinois, Dept Elect & Comp Engn, Ctr Comutat Electromagnet, Urbana, IL 61801 USA
关键词
boundary integral equations; finite element methods; electromagnetic scattering; electromagnetic transient analysis;
D O I
10.1109/8.954934
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A time-domain, finite element-boundary integral (FE-BI) method is presented for analyzing electromagnetic (EM) scattering from two-dimensional (2-D) inhomogeneous objects. The scheme's finite-element component expands transverse fields in terms of a pair of orthogonal vector basis functions and is coupled to its boundary integral component in such a way that the resultant finite element mass matrix is diagonal, and more importantly, the method delivers solutions that are free of spurious modes. The boundary integrals are computed using the multilevel plane-wave time-domain algorithm to enable the simulation of large-scale scattering phenomena. Numerical results demonstrate the capabilities and accuracy of the proposed hybrid scheme.
引用
收藏
页码:1453 / 1461
页数:9
相关论文
共 50 条
  • [31] A SELECTIVE REVIEW OF THE FINITE ELEMENT-ABC AND THE FINITE ELEMENT-BOUNDARY INTEGRAL METHODS FOR ELECTROMAGNETIC SCATTERING
    VOLAKIS, JL
    CHATTERJEE, A
    [J]. ANNALES DES TELECOMMUNICATIONS-ANNALS OF TELECOMMUNICATIONS, 1995, 50 (5-6): : 499 - 509
  • [32] A time-domain finite element boundary integral approach for elastic wave scattering
    Shi, F.
    Lowe, M. J. S.
    Skelton, E. A.
    Craster, R. V.
    [J]. COMPUTATIONAL MECHANICS, 2018, 61 (04) : 471 - 483
  • [33] A time-domain finite element boundary integral approach for elastic wave scattering
    F. Shi
    M. J. S. Lowe
    E. A. Skelton
    R. V. Craster
    [J]. Computational Mechanics, 2018, 61 : 471 - 483
  • [34] FEBIE - COMBINED FINITE ELEMENT-BOUNDARY INTEGRAL-EQUATION METHOD
    SHAW, RP
    FALBY, W
    [J]. COMPUTERS & FLUIDS, 1978, 6 (03) : 153 - 160
  • [35] HYBRID GENERALIZED FINITE ELEMENT-BOUNDARY INTEGRAL METHOD FOR APERTURE DESIGN
    Tuncer, O.
    Shanker, B.
    Kempel, L. C.
    [J]. 2009 3RD EUROPEAN CONFERENCE ON ANTENNAS AND PROPAGATION, VOLS 1-6, 2009, : 2401 - 2404
  • [36] A Cost-Effective Preconditioner for Complete Domain Decomposition Method of Hybrid Finite Element-Boundary Integral
    Gao, Hong-Wei
    Yang, Ming-Lin
    Sheng, Xin-Qing
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2018, 66 (09) : 4964 - 4969
  • [37] Application of the fast multipole method to hybrid finite element-boundary element models
    Sabariego, RV
    Gyselinck, J
    Geuzaine, C
    Dular, P
    Legros, W
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2004, 168 (1-2) : 403 - 412
  • [38] A Hybrid Time-Domain Discontinuous Galerkin-Boundary Integral Method for Electromagnetic Scattering Analysis
    Li, Ping
    Shi, Yifei
    Jiang, Li Jun
    Bagci, Hakan
    [J]. IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2014, 62 (05) : 2841 - 2846
  • [39] Benchmarking of finite-difference time-domain method and fast multipole boundary element method for room acoustics
    Li, Yue
    Meyer, Julie
    Lokki, Tapio
    Cuenca, Jacques
    Atak, Onur
    Desmet, Wim
    [J]. APPLIED ACOUSTICS, 2022, 191
  • [40] A mixed finite element-boundary element method in an analysis of piezoceramic transducers
    NI Fiziko-Tekhnicheskij Inst pri, Dal'nevostochnom Gosudarstvennom, Univ, Vladivostok, Russia
    [J]. Akust Z, 2 (172-178):