Killing vector fields and a homogeneous isotropic universe

被引:21
|
作者
Katanaev, M. O. [1 ]
机构
[1] Russian Acad Sci, Steklov Math Inst, Ul Gubkina 8, Moscow 119991, Russia
基金
俄罗斯科学基金会;
关键词
Killing vector field; homogeneous universe; isotropic universe; Friedmann metric; CURVATURE; WORLD;
D O I
10.3367/UFNe.2016.05.037808
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Some basic theorems on Killing vector fields are reviewed. In particular, the topic of a constant-curvature space is examined. A detailed proof is given for a theorem describing the most general form of the metric of a homogeneous isotropic space time. Although this theorem can be considered to be commonly known, its complete proof is difficult to find in the literature. An example metric is presented such that all its spatial cross sections correspond to constant-curvature spaces, but it is not homogeneous and isotropic as a whole. An equivalent definition of a homogeneous isotropic space time in geometric terms of embedded manifolds is also given.
引用
收藏
页码:689 / 700
页数:12
相关论文
共 50 条
  • [41] UNIQUENESS OF TIMELIKE KILLING VECTOR FIELDS
    IHRIG, E
    SEN, DK
    ANNALES DE L INSTITUT HENRI POINCARE SECTION A PHYSIQUE THEORIQUE, 1975, 23 (03): : 297 - 301
  • [42] On the geometry of orbits of killing vector fields
    Narmanov, A. Ya.
    Saitova, S. S.
    DIFFERENTIAL EQUATIONS, 2014, 50 (12) : 1584 - 1591
  • [43] KILLING VECTOR FIELDS AND HARMONIC FORMS
    WRIGHT, ET
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 199 (NOV) : 199 - 202
  • [44] On Killing Vector Fields on Riemannian Manifolds
    Deshmukh, Sharief
    Belova, Olga
    MATHEMATICS, 2021, 9 (03) : 1 - 17
  • [45] Killing fields and curvatures of homogeneous Finsler manifolds
    Hu, Zhiguang
    Deng, Shaoqiang
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2019, 94 (1-2): : 215 - 229
  • [46] Clustering of vector nulls in homogeneous isotropic turbulence
    Mora, D. O.
    Bourgoin, M.
    Mininni, P. D.
    Obligado, M.
    PHYSICAL REVIEW FLUIDS, 2021, 6 (02)
  • [47] NOTES ON AFFINE KILLING AND TWO-KILLING VECTOR FIELDS
    Wang, Wenjie
    MATHEMATICA SLOVACA, 2022, 72 (02) : 483 - 490
  • [48] Stochastic filling of homogeneous isotropic random fields
    Gubina, N. I.
    Ogorodnikov, V. A.
    RUSSIAN JOURNAL OF NUMERICAL ANALYSIS AND MATHEMATICAL MODELLING, 2006, 21 (06) : 507 - 517
  • [49] HOMOGENEOUS AND ISOTROPIC RANDOM POINT FIELDS IN PLANE
    AMBARTZUMIAN, RV
    MATHEMATISCHE NACHRICHTEN, 1975, 70 : 365 - 385
  • [50] Simulation of homogeneous and partially isotropic random fields
    Katafygiotis, LS
    Pachakis, D
    Zerva, A
    APPLICATIONS OF STATISTICS AND PROBABILITY, VOLS 1 AND 2: CIVIL ENGINEERING RELIABILITY AND RISK ANALYSIS, 2000, : 95 - 102