Displacement Talbot lithography for nano-engineering of III-nitride materials

被引:38
|
作者
Coulon, Pierre-Marie [1 ]
Damilano, Benjamin [2 ]
Alloing, Blandine [2 ]
Chausse, Pierre [1 ]
Walde, Sebastian [3 ]
Enslin, Johannes [4 ]
Armstrong, Robert [1 ]
Vezian, Stephane [2 ]
Hagedorn, Sylvia [3 ]
Wernicke, Tim [4 ]
Massies, Jean [2 ]
Zuniga-Perez, Jesus [2 ]
Weyers, Markus [3 ]
Kneissl, Michael [3 ,4 ]
Shields, Philip A. [1 ]
机构
[1] Univ Bath, Dept Elect & Elect Engn, Bath BA2 7AY, Avon, England
[2] Univ Cote Azur, CRHEA, CNRS, Rue B Gregory, F-06560 Valbonne, France
[3] Leibniz Inst Hochstfrequenztech, Ferdinand Braun Inst, Gustav Kirchhoff Str 4, D-12489 Berlin, Germany
[4] Tech Univ Berlin, Inst Solid State Phys, D-10623 Berlin, Germany
基金
英国工程与自然科学研究理事会;
关键词
LIGHT-EMITTING DIODE; EXTRACTION EFFICIENCY; PATTERNED SAPPHIRE; GAN; GROWTH; FABRICATION; SUBLIMATION; NANOWIRES; EPITAXY; OUTPUT;
D O I
10.1038/s41378-019-0101-2
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nano-engineering III-nitride semiconductors offers a route to further control the optoelectronic properties, enabling novel functionalities and applications. Although a variety of lithography techniques are currently employed to nano-engineer these materials, the scalability and cost of the fabrication process can be an obstacle for large-scale manufacturing. In this paper, we report on the use of a fast, robust and flexible emerging patterning technique called Displacement Talbot lithography (DTL), to successfully nano-engineer III-nitride materials. DTL, along with its novel and unique combination with a lateral planar displacement ((DTL)-T-2), allow the fabrication of a variety of periodic nanopatterns with a broad range of filling factors such as nanoholes, nanodots, nanorings and nanolines; all these features being achievable from one single mask. To illustrate the enormous possibilities opened by DTL/(DTL)-T-2, dielectric and metal masks with a number of nanopatterns have been generated, allowing for the selective area growth of InGaN/GaN core-shell nanorods, the top-down plasma etching of III-nitride nanostructures, the top-down sublimation of GaN nanostructures, the hybrid top-down/bottom-up growth of AIN nanorods and GaN nanotubes, and the fabrication of nanopatterned sapphire substrates for AIN growth. Compared with their planar counterparts, these 3D nanostructures enable the reduction or filtering of structural defects and/or the enhancement of the light extraction, therefore improving the efficiency of the final device. These results, achieved on a wafer scale via DTL and upscalable to larger surfaces, have the potential to unlock the manufacturing of nano-engineered III-nitride materials.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Displacement Talbot lithography for nano-engineering of III-nitride materials
    Pierre-Marie Coulon
    Benjamin Damilano
    Blandine Alloing
    Pierre Chausse
    Sebastian Walde
    Johannes Enslin
    Robert Armstrong
    Stéphane Vézian
    Sylvia Hagedorn
    Tim Wernicke
    Jean Massies
    Jesus Zúñiga‐Pérez
    Markus Weyers
    Michael Kneissl
    Philip A. Shields
    [J]. Microsystems & Nanoengineering, 5
  • [2] III-nitride nano-LEDs for single photon lithography
    Trellenkamp, St.
    Mikulics, M.
    Winden, A.
    Arango, Y. C.
    Moers, J.
    Marso, M.
    Gruetzmacher, D.
    Hardtdegen, H.
    [J]. 2014 10TH INTERNATIONAL CONFERENCE ON ADVANCED SEMICONDUCTOR DEVICES & MICROSYSTEMS (ASDAM), 2014, : 85 - 88
  • [3] Electronic properties of III-nitride materials and basics of III-nitride FETs
    Asbeck, Peter M.
    [J]. III-NITRIDE ELECTRONIC DEVICES, 2019, 102 : 1 - 40
  • [4] Doping of III-nitride materials
    Pampili, Pietro
    Parbrook, Peter J.
    [J]. MATERIALS SCIENCE IN SEMICONDUCTOR PROCESSING, 2017, 62 : 180 - 191
  • [5] Theoretical predictions of wurtzite III-nitride nano-materials properties
    Guisbiers, Gregory
    Liu, Di
    Jiang, Qing
    Buchaillot, Lionel
    [J]. PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2010, 12 (26) : 7203 - 7210
  • [6] Recent developments in the III-nitride materials
    Monemar, B.
    Paskov, P. P.
    Bergman, J. P.
    Toropov, A. A.
    Shubina, T. V.
    [J]. PHYSICA STATUS SOLIDI B-BASIC SOLID STATE PHYSICS, 2007, 244 (06): : 1759 - 1768
  • [7] III-nitride growth on lithium niobate: A new substrate material for polarity engineering in III-nitride heteroepitaxy
    Doolittle, WA
    Namkoong, G
    Carver, A
    Henderson, W
    Jundt, D
    Brown, AS
    [J]. GAN AND RELATED ALLOYS-2002, 2003, 743 : 9 - 14
  • [8] Progress in periodically oriented III-nitride materials
    Hite, Jennifer
    [J]. JOURNAL OF CRYSTAL GROWTH, 2016, 456 : 133 - 136
  • [9] Group III-nitride lasers: a materials perspective
    Hardy, Matthew T.
    Feezell, Daniel F.
    DenBaars, Steven P.
    Nakamura, Shuji
    [J]. MATERIALS TODAY, 2011, 14 (09) : 408 - 415
  • [10] Structural Characterization of III-Nitride Materials and Devices
    Smith, David J.
    Zhou, Lin
    Moustakas, T. D.
    [J]. QUANTUM SENSING AND NANOPHOTONIC DEVICES VIII, 2011, 7945