Apatite chemistry from Kiruna-type Bafq iron deposits, Central Iran: a review

被引:0
|
作者
Heidarian, Hassan [1 ]
Alirezaei, Saeed [1 ]
Lentz, David R. [2 ]
机构
[1] Shahid Beheshti Univ, Tehjran, Iran
[2] Univ New Brunswick, Fredericton, NB, Canada
关键词
TRACE-ELEMENT COMPOSITIONS; MINERAL EXPLORATION; U-PB; MAGNETITE; GEOCHRONOLOGY; PETROGENESIS; DISTRICT; ORES;
D O I
暂无
中图分类号
P5 [地质学];
学科分类号
0709 ; 081803 ;
摘要
The magnetite-apatite deposits in the Bafq metallogenic province in Central Iran, including the world-class Chadormalu and Choghart, as well as Se-Chahun and Esfordi, are hosted in the Late Precambrian-Cambrian volcanic-sedimentary rocks that have undergone variable sodic, calcic, potassic, silicic, chloritic, and sericitic alterations that are characteristic of iron oxide-apatite (IOA) ore systems. Apatites from various iron deposits in the Bafq district display chondrite-normalized REE patterns characteristic of Kiruna-type deposits. The REE patterns of the apatites display similarities to those of the magmatic and sedimentary country rocks. The trace-element patterns of the apatites are comparable to those of the local granitoids and mafic bodies, as well as the iron ores, and to other Kiruna-type deposits. It can be concluded, from apatite geochemistry of major magnetite-apatite deposits in the Bafq district that both magmatic and basinal fluids contributed to the formation of the iron oxide deposits. For the Chadormalu deposit, two generations of apatite are distinguished in backscattered electron images. The lower Sigma REE and Y in the earlier, and dominant, generation can be explained by local fluid aided dissolution/reprecipitation processes that led to development of monazite in close spatial association with depleted apatite. This would explain the younger monazite ages (450-250 Ma) compared with the apatite ages (533-510 Ma) obtained for Chadormalu deposit.
引用
收藏
页码:927 / 930
页数:4
相关论文
共 50 条
  • [21] The Abagong apatite-rich magnetite deposit in the Chinese Altay Orogenic Belt: A Kiruna-type iron deposit
    Chai, Fengmei
    Yang, Fuquan
    Liu, Feng
    Santosh, M.
    Geng, Xinxia
    Li, Qiang
    Liu, Guoren
    ORE GEOLOGY REVIEWS, 2014, 57 : 482 - 497
  • [22] Skarn mineral assemblages in the Esfordi iron oxide–apatite deposit, Bafq district, Central Iran
    Sedigheh Taghipour
    Ali Kananian
    Mohammad Ali Mackizadeh
    Alireza K. Somarin
    Arabian Journal of Geosciences, 2015, 8 : 2967 - 2981
  • [23] Numerical modeling of mineralizing processes during the formation of the Yangzhuang Kiruna-type iron deposit, Middle and Lower Yangtze River Metallogenic Belt, China: Implications for the genesis and longevity of Kiruna-type iron oxide-apatite systems
    Hu, Xunyu
    Jowitt, Simon
    Yuan, Feng
    Liu, Guangxian
    Luo, Jinhui
    Chen, Yuhua
    Yang, Hui
    Ren, Keyue
    Yang, Yongguo
    SOLID EARTH SCIENCES, 2022, 7 (01) : 23 - 37
  • [24] New contributions to the understanding of Kiruna-type iron oxide-apatite deposits revealed by magnetite ore and gangue mineral geochemistry at the El Romeral deposit, Chile
    Rojas, Paula A.
    Barra, Fernando
    Deditius, Artur
    Reich, Martin
    Simon, Adam
    Roberts, Malcolm
    Rojo, Mario
    ORE GEOLOGY REVIEWS, 2018, 93 : 413 - 435
  • [25] RARE-EARTH ELEMENTS IN APATITE AND MAGNETITE IN KIRUNA-TYPE IRON-ORES AND SOME OTHER IRON-ORE TYPES
    FRIETSCH, R
    PERDAHL, JA
    ORE GEOLOGY REVIEWS, 1995, 9 (06) : 489 - 510
  • [26] Formation and evolution of Th-REE mineralizing fluids at the Kiruna-type Choghart iron oxide-apatite deposit, Central Iran: Insights from fluid inclusions and H-C-O isotopes
    Khoshnoodi, Khalegh
    Yazdi, Mohammad
    Ghannadi-Maragheh, Mohammad
    Ziapour, Samaneh
    Deymar, Saleh
    Behzadi, Mehrdad
    GEOLOGICAL JOURNAL, 2022, 57 (06) : 2144 - 2159
  • [27] Giant Kiruna-type deposits form by efficient flotation of magmatic magnetite suspensions
    Knipping, Jaayke L.
    Bilenker, Laura D.
    Simon, Adam C.
    Reich, Martin
    Barra, Fernando
    Deditius, Artur P.
    Lundstrom, Craig
    Bindeman, Ilya
    Munizaga, Rodrigo
    GEOLOGY, 2015, 43 (07) : 591 - 594
  • [28] Experimental investigation of the upper thermal stability of Mg-rich actinolite; Implications for Kiruna-type iron deposits
    Lledo, Haroldo L.
    Jenkins, David M.
    JOURNAL OF PETROLOGY, 2008, 49 (02) : 225 - 238
  • [29] Kiruna-Type Iron Oxide-Apatite (IOA) and Iron Oxide Copper-Gold (IOCG) Deposits Form by a Combination of Igneous and Magmatic-Hydrothermal Processes: Evidence from the Chilean Iron Belt
    Simon, Adam C.
    Knipping, Jaayke
    Reich, Martin
    Barra, Fernando
    Deditius, Artur P.
    Bilenker, Laura
    Childress, Tristan
    METALS, MINERALS, AND SOCIETY, 2018, 21 : 89 - 114
  • [30] Global Fe–O isotope correlation reveals magmatic origin of Kiruna-type apatite-iron-oxide ores
    Valentin R. Troll
    Franz A. Weis
    Erik Jonsson
    Ulf B. Andersson
    Seyed Afshin Majidi
    Karin Högdahl
    Chris Harris
    Marc-Alban Millet
    Sakthi Saravanan Chinnasamy
    Ellen Kooijman
    Katarina P. Nilsson
    Nature Communications, 10