Noncommutative geometry as a regulator

被引:4
|
作者
Ydri, B [1 ]
机构
[1] Syracuse Univ, Dept Phys, Syracuse, NY 13244 USA
来源
PHYSICAL REVIEW D | 2001年 / 63卷 / 02期
关键词
D O I
10.1103/PhysRevD.63.025004
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We give a perturbative quantization of R-4 space-time in the case where the commutators C-muv = [X-mu,X-v] of the underlying algebra generators are not central. We argue that this kind of quantum space-time can be used as a regulator for quantum field theories. In particular we show, in the case of phi (4) theory, that by choosing appropriately the commutators C-mu ,C-v we can remove all the infinities by reproducing all the counterterms. In other words, the renormalized action on R-4 plus the counterterms can be rewritten as only a renormalized action on the quantum space-time QR(4). We conjecture therefore that the renormalization of quantum field theory is equivalent to the quantization of the underlying space-time R-4.
引用
收藏
页数:13
相关论文
共 50 条
  • [21] Stratified Noncommutative Geometry
    Ayala, David
    Mazel-Gee, Aaron
    Rozenblyum, Nick
    [J]. MEMOIRS OF THE AMERICAN MATHEMATICAL SOCIETY, 2024, 297 (1485)
  • [22] Supersymmetry and noncommutative geometry
    Kalau, W
    Walze, M
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 1997, 22 (01) : 77 - 102
  • [23] QUATERNIONS AND NONCOMMUTATIVE GEOMETRY
    MORITA, K
    [J]. PROGRESS OF THEORETICAL PHYSICS, 1993, 90 (01): : 219 - 236
  • [24] Noncommutative Geometry and Arithmetic
    Marcolli, Matilde
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONGRESS OF MATHEMATICIANS, VOL III: INVITED LECTURES, 2010, : 2057 - 2077
  • [25] NONCOMMUTATIVE GEOMETRY AND SUPERSYMMETRY
    HUSSAIN, F
    THOMPSON, G
    [J]. PHYSICS LETTERS B, 1991, 260 (3-4) : 359 - 364
  • [26] The Geometry of Noncommutative Spacetimes
    Eckstein, Michal
    [J]. UNIVERSE, 2017, 3 (01)
  • [27] An introduction to noncommutative geometry
    Madore, J
    [J]. GEOMETRY AND QUANTUM PHYSICS, 2000, 543 : 231 - 273
  • [28] Noncommutative geometry and gravity
    Aschieri, Paolo
    Dimitrijevic, Marija
    Meyer, Frank
    Wess, Julius
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2006, 23 (06) : 1883 - 1911
  • [29] ELEMENTS OF NONCOMMUTATIVE GEOMETRY
    Markl, Martin
    [J]. MATHEMATICA BOHEMICA, 2005, 130 (01): : 111 - 111
  • [30] Noncommutative geometry and arithmetics
    P. Almeida
    [J]. Russian Journal of Mathematical Physics, 2009, 16 : 350 - 362