Geometrically frustrated matter - Magnets to molecules

被引:24
|
作者
Ramirez, AP
机构
关键词
complex adaptive matter; emergent behavior; geometric frustration;
D O I
10.1557/mrs2005.122
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Geometric frustration occurs when a set of degrees of freedom is incompatible with the space it occupies. A purely geometric example is the impossibility of close-packing pentagons in two dimensions. Another simple example is atomic magnetic moments with antiferromagnetic interactions. These moments lower their interaction energy by pointing antiparallel to their neighbors, an arrangement incompatible with the occupation of a crystal lattice of triangular symmetry. Other manifestations of frustration occur in ice, glass, liquid crystals, and correlated metals. Because frustration governs the rules of packing, examples are also found in biological materials, as in the self-assembly of liposomes that form nanotubules. Geometric frustration is essentially "many-body" in nature: the basic concept is trivial on the scale of three particles, but complex and anharmonic for an Avogadro's number of particles. In fact, geometrically frustrated systems are so anharmonic that no general theoretical framework exists to explain their collective behavior. This article will explore the basic concepts of geometric frustration and illustrate these concepts with examples from magnetism, crystal structures, and molecular systems.
引用
收藏
页码:447 / 451
页数:5
相关论文
共 50 条
  • [21] Magnetic PDF analysis: A tool for making geometrically frustrated magnets less frustrating
    Frandsen, Benjamin
    ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2019, 75 : A219 - A219
  • [22] Theoretical and experimental developments in quantum spin liquid in geometrically frustrated magnets: a review
    Shaginyan, V. R.
    Stephanovich, V. A.
    Msezane, A. Z.
    Japaridze, G. S.
    Clark, J. W.
    Amusia, M. Ya.
    Kirichenko, E. V.
    JOURNAL OF MATERIALS SCIENCE, 2020, 55 (06) : 2257 - 2290
  • [23] Theoretical and experimental developments in quantum spin liquid in geometrically frustrated magnets: a review
    V. R. Shaginyan
    V. A. Stephanovich
    A. Z. Msezane
    G. S. Japaridze
    J. W. Clark
    M. Ya. Amusia
    E. V. Kirichenko
    Journal of Materials Science, 2020, 55 : 2257 - 2290
  • [24] Review of NMR studies of nanoscale molecular magnets composed of geometrically frustrated antiferromagnetic triangles
    Furukawa, Yuji
    INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2016, 13 (10-12) : 845 - 869
  • [25] Two-population model for anomalous low-temperature magnetism in geometrically frustrated magnets
    Schiffer, P
    Daruka, I
    PHYSICAL REVIEW B, 1997, 56 (21): : 13712 - 13715
  • [26] Geometrically frustrated magnetic materials
    Greedan, JE
    JOURNAL OF MATERIALS CHEMISTRY, 2001, 11 (01) : 37 - 53
  • [27] Perspective: Geometrically frustrated assemblies
    Grason, Gregory M.
    JOURNAL OF CHEMICAL PHYSICS, 2016, 145 (11):
  • [28] Geometrically frustrated magnetism PREFACE
    Gardner, Jason S.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2011, 23 (16)
  • [29] Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets
    King, Andrew D.
    Raymond, Jack
    Lanting, Trevor
    Isakov, Sergei V.
    Mohseni, Masoud
    Poulin-Lamarre, Gabriel
    Ejtemaee, Sara
    Bernoudy, William
    Ozfidan, Isil
    Smirnov, Anatoly Yu.
    Reis, Mauricio
    Altomare, Fabio
    Babcock, Michael
    Baron, Catia
    Berkley, Andrew J.
    Boothby, Kelly
    Bunyk, Paul I.
    Christiani, Holly
    Enderud, Colin
    Evert, Bram
    Harris, Richard
    Hoskinson, Emile
    Huang, Shuiyuan
    Jooya, Kais
    Khodabandelou, Ali
    Ladizinsky, Nicolas
    Li, Ryan
    Lott, P. Aaron
    MacDonald, Allison J. R.
    Marsden, Danica
    Marsden, Gaelen
    Medina, Teresa
    Molavi, Reza
    Neufeld, Richard
    Norouzpour, Mana
    Oh, Travis
    Pavlov, Igor
    Perminov, Ilya
    Prescott, Thomas
    Rich, Chris
    Sato, Yuki
    Sheldan, Benjamin
    Sterling, George
    Swenson, Loren J.
    Tsai, Nicholas
    Volkmann, Mark H.
    Whittaker, Jed D.
    Wilkinson, Warren
    Yao, Jason
    Neven, Hartmut
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [30] Scaling advantage over path-integral Monte Carlo in quantum simulation of geometrically frustrated magnets
    Andrew D. King
    Jack Raymond
    Trevor Lanting
    Sergei V. Isakov
    Masoud Mohseni
    Gabriel Poulin-Lamarre
    Sara Ejtemaee
    William Bernoudy
    Isil Ozfidan
    Anatoly Yu. Smirnov
    Mauricio Reis
    Fabio Altomare
    Michael Babcock
    Catia Baron
    Andrew J. Berkley
    Kelly Boothby
    Paul I. Bunyk
    Holly Christiani
    Colin Enderud
    Bram Evert
    Richard Harris
    Emile Hoskinson
    Shuiyuan Huang
    Kais Jooya
    Ali Khodabandelou
    Nicolas Ladizinsky
    Ryan Li
    P. Aaron Lott
    Allison J. R. MacDonald
    Danica Marsden
    Gaelen Marsden
    Teresa Medina
    Reza Molavi
    Richard Neufeld
    Mana Norouzpour
    Travis Oh
    Igor Pavlov
    Ilya Perminov
    Thomas Prescott
    Chris Rich
    Yuki Sato
    Benjamin Sheldan
    George Sterling
    Loren J. Swenson
    Nicholas Tsai
    Mark H. Volkmann
    Jed D. Whittaker
    Warren Wilkinson
    Jason Yao
    Hartmut Neven
    Nature Communications, 12