Dual bipartite Q-polynomial distance-regular graphs

被引:12
|
作者
Dickie, GA [1 ]
Terwilliger, PM [1 ]
机构
[1] UNIV WISCONSIN,DEPT MATH,MADISON,WI 53706
关键词
D O I
10.1006/eujc.1996.0052
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify the dual bipartite Q-polynomial distance-regular graphs of diameter d greater than or equal to 5 which are not bipartite. Results of Curtin and Nomura give a classification of the dual bipartite Q-polynomial distance-regular graphs of diameter d greater than or equal to 6 which are bipartite. This completes a classification of the dual bipartite Q-polynomial distance-regular graphs of diameter d greater than or equal to 6. (C) 1996 Academic Press Limited
引用
收藏
页码:613 / 623
页数:11
相关论文
共 50 条
  • [21] Nonexistence of certain Q-polynomial distance-regular graphs
    Makhnev, A. A.
    Golubyatnikov, M. P.
    TRUDY INSTITUTA MATEMATIKI I MEKHANIKI URO RAN, 2019, 25 (04): : 136 - 141
  • [22] Tight distance-regular graphs and the Q-polynomial property
    Pascasio, AA
    GRAPHS AND COMBINATORICS, 2001, 17 (01) : 149 - 169
  • [23] The last subconstituent of a bipartite Q-polynomial distance-regular graph
    Caughman, JS
    EUROPEAN JOURNAL OF COMBINATORICS, 2003, 24 (05) : 459 - 470
  • [24] Twice Q-polynomial distance-regular graphs of diameter 4
    Ma JianMin
    Koolen, Jack H.
    SCIENCE CHINA-MATHEMATICS, 2015, 58 (12) : 2683 - 2690
  • [25] ON Q-POLYNOMIAL DISTANCE-REGULAR GRAPHS Γ WITH STRONGLY REGULAR GRAPHS Γ2 AND Γ3
    Belousov, Ivan Nikolaevich
    Makhnev, Aleksandr Alekseevich
    Nirova, Marina Sefovna
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2019, 16 : 1385 - 1392
  • [26] Twice Q-polynomial distance-regular graphs of diameter 4
    MA JianMin
    KOOLEN Jack H.
    Science China Mathematics, 2015, 58 (12) : 2683 - 2690
  • [27] Q-polynomial distance-regular graphs with a1=0
    Miklavic, T
    EUROPEAN JOURNAL OF COMBINATORICS, 2004, 25 (07) : 911 - 920
  • [28] Twice Q-polynomial distance-regular graphs of diameter 4
    JianMin Ma
    Jack H. Koolen
    Science China Mathematics, 2015, 58 : 2683 - 2690
  • [29] Triple intersection numbers of Q-polynomial distance-regular graphs
    Urlep, Matjaz
    EUROPEAN JOURNAL OF COMBINATORICS, 2012, 33 (06) : 1246 - 1252
  • [30] Vertex subsets with minimal width and dual width in Q-polynomial distance-regular graphs
    Tanaka, Hajime
    ELECTRONIC JOURNAL OF COMBINATORICS, 2011, 18 (01):