An efficient nanostructured copper(I) sulfide-based hydrogen evolution electrocatalyst at neutral pH

被引:63
|
作者
Fan, Meihong [1 ]
Gao, Ruiqin [1 ]
Zou, Yong-Cun [1 ]
Wang, Dejun [1 ,2 ]
Bai, Ni [3 ]
Li, Guo-Dong [1 ]
Zou, Xiaoxin [1 ]
机构
[1] Jilin Univ, State Key Lab Inorgan Synth & Preparat Chem, Int Joint Res Lab Nanomicro Architecture Chem, Coll Chem, 2699 Qianjin St, Changchun 130012, Peoples R China
[2] Tsinghua Univ, Dept Chem, Beijing 100084, Peoples R China
[3] Jiangsu Univ Sci & Technol, Sch Mech & Met Engn, Zhangjiagang 215600, Peoples R China
关键词
Cu2S; water splitting; hydrogen evolution reaction; copper foam; electrocatalysis; WS2; NANOFLAKES; WATER; GENERATION; NANOSHEETS; COMPLEXES; REDUCTION; COMPOSITE; MECHANISM; CATALYSTS; NANOWIRE;
D O I
10.1016/j.electacta.2016.08.129
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Developing efficient nonprecious electrocatalysts to accelerate the hydrogen evolution reaction ( HER) is of importance for the hydrogen energy technology. Herein, we report the in situ growth of single-crystalline gamma-Cu2S nanoplates on copper foam ( CF) in a hydrothermal system, with the assistance of a small amount of cobalt( II) acetate. The presence of cobalt( II) acetate in the synthesis system has been proven to have multiple roles: ( i) inhibiting the formation of copper( I) oxide ( Cu2O); ( ii) directing the fromation of the crystal phase of gamma-Cu2S; and ( iii) controlling the morphology of the as-formed gamma-Cu2S. Furthermore, we show that the resulting gamma-Cu2S/CF material can serve as an efficient integrated 3D electrode toward HER at neutral pH. The gamma-Cu2S/CF delivers a current density of 10 mA/cm(2) at a small overpotential of 190 mV, gives 100% Faradaic yield during HER, and maintains its electrocatalytic activity for > 10 hours. To the best of our knowledge, this is the first time that a copper( I) sulfide-based material is demonstrated to electrocatalyze the HER efficiently. Identifying copper( I) sulfide as the active phase for HER and constructing advantageous 3D gamma-Cu2S nanostructure via an ion-induced method might open a door for the further investigation of Cu-based hydrogen-evolution electrocatalysts. (C) 2016 Elsevier Ltd. All rights reserved.
引用
收藏
页码:366 / 373
页数:8
相关论文
共 50 条
  • [11] Atomically Dispersed Platinum Modulated by Sulfide as an Efficient Electrocatalyst for Hydrogen Evolution Reaction
    Zhou, Kai Ling
    Han, Chang Bao
    Wang, Zelin
    Ke, Xiaoxing
    Wang, Changhao
    Jin, Yuhong
    Zhang, Qianqian
    Liu, Jingbing
    Wang, Hao
    Yan, Hui
    ADVANCED SCIENCE, 2021, 8 (12)
  • [12] The nature of active sites of molybdenum sulfide-based catalysts for hydrogen evolution reaction
    Hu, Weifeng
    Xie, Lingbin
    Gu, Chen
    Zheng, Weihao
    Tu, Yan
    Yu, Haoxuan
    Huang, Baoyu
    Wang, Longlu
    COORDINATION CHEMISTRY REVIEWS, 2024, 506
  • [13] In Situ Fabrication of Ni-Mo Bimetal Sulfide Hybrid as an Efficient Electrocatalyst for Hydrogen Evolution over a Wide pH Range
    Kuang, Panyong
    Tong, Tong
    Fan, Ke
    Yu, Jiaguo
    ACS CATALYSIS, 2017, 7 (09): : 6179 - 6187
  • [14] CuS nanoparticles: An efficient electrocatalyst for hydrogen evolution reaction in a wide pH range
    Patel, Meswa
    Joshi, Kinjal K.
    Modi, Krishna H.
    Pataniya, Pratik M.
    Siraj, Sohel
    Sahatiya, Parikshit
    Sumesh, C. K.
    ELECTROCHIMICA ACTA, 2023, 441
  • [15] Impact of a conductive oxide core in tungsten sulfide-based nanostructures on the hydrogen evolution reaction
    Seo, Bora
    Jeong, Hu Young
    Hong, Sung You
    Zak, Alla
    Joo, Sang Hoon
    CHEMICAL COMMUNICATIONS, 2015, 51 (39) : 8334 - 8337
  • [16] Branched heterostructures of nickel–copper phosphides as an efficient electrocatalyst for the hydrogen evolution reaction
    Haiyan Li
    Jie Xiang
    Hongxing Li
    Journal of Materials Science: Materials in Electronics, 2020, 31 : 11425 - 11433
  • [17] Nanostructured Nickel Phosphide as an Electrocatalyst for the Hydrogen Evolution Reaction
    Popczun, Eric J.
    McKone, James R.
    Read, Carlos G.
    Biacchi, Adam J.
    Wiltrout, Alex M.
    Lewis, Nathan S.
    Schaak, Raymond E.
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (25) : 9267 - 9270
  • [18] Metal sulfide-based process analysis for hydrogen generation from hydrogen sulfide conversion
    Reddy, Sharath
    Nadgouda, Sourabh G.
    Tong, Andrew
    Fan, L. -S.
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (39) : 21336 - 21350
  • [19] Efficient Hydrogen Production at pH 7 in Water with a Heterogeneous Electrocatalyst Based on a Neutral Dimeric Cobalt-Dithiolene Complex
    Zhang, Chanjuan
    Prignot, Erwan
    Jeannin, Olivier
    Vacher, Antoine
    Dragoe, Diana
    Camerel, Franck
    Halime, Zakaria
    Gramage-Doria, Rafael
    ACS CATALYSIS, 2023, 13 (04) : 2367 - 2373
  • [20] Cadmium sulfide-based nanomaterials for photocatalytic hydrogen production
    Yuan, Yong-Jun
    Chen, Daqin
    Yu, Zhen-Tao
    Zou, Zhi-Gang
    JOURNAL OF MATERIALS CHEMISTRY A, 2018, 6 (25) : 11606 - 11630