Well-posedness for a Class of Pseudodifferential Diffusion Equations on the Torus

被引:0
|
作者
Delgado, Julio [1 ]
机构
[1] Univ Valle, Dept Matemat, Calle 13 100-00, Cali 76001, Colombia
关键词
Fractional diffusion; pseudodifferential operators; well-posedness; periodic pseudodifferential operators; FRACTIONAL LAPLACIAN; REGULARITY;
D O I
10.1007/s00025-022-01713-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we establish the well-posedness of the Cauchy problem for a class of pseudodifferential diffusion equations on the torus. The class considered includes fractional diffusion equations and as a special case we consider fractional diffusion equations with drift. By applying toroidal pseudodifferential calculus we establish regularity estimates, existence and uniqueness with respect to the usual Sobolev spaces on the torus.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Well-posedness of general nonlocal nonhomogeneous boundary value problems for pseudodifferential equations with partial derivatives
    È. M. Saydamatov
    Siberian Advances in Mathematics, 2007, 17 (3) : 213 - 226
  • [42] LOCAL WELL-POSEDNESS FOR THIRD ORDER BENJAMIN-ONO TYPE EQUATIONS ON THE TORUS
    Tanaka, Tomoyuki
    ADVANCES IN DIFFERENTIAL EQUATIONS, 2019, 24 (9-10) : 555 - 580
  • [43] A WELL-POSEDNESS FOR THE REACTION DIFFUSION EQUATIONS OF BELOUSOV-ZHABOTINSKY REACTION
    Kondo, S.
    Novrianti
    Sawada, O.
    Tsuge, N.
    OSAKA JOURNAL OF MATHEMATICS, 2021, 58 (01) : 59 - 70
  • [44] Well-posedness and maximum principles for lattice reaction-diffusion equations
    Slavik, Antonin
    Stenlik, Petr
    Volek, Jonas
    ADVANCES IN NONLINEAR ANALYSIS, 2019, 8 (01) : 303 - 322
  • [45] Local well-posedness for the Zakharov system on the multidimensional torus
    Nobu Kishimoto
    Journal d'Analyse Mathématique, 2013, 119 : 213 - 253
  • [46] Local well-posedness for the Zakharov system on the multidimensional torus
    Kishimoto, Nobu
    JOURNAL D ANALYSE MATHEMATIQUE, 2013, 119 : 213 - 253
  • [47] Local well-posedness for the Cauchy problem of the MHD equations with mass diffusion
    Fan, Jishan
    Ni, Lidiao
    Zhou, Yong
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (07) : 792 - 797
  • [48] WELL-POSEDNESS OF ABSTRACT DISTRIBUTED-ORDER FRACTIONAL DIFFUSION EQUATIONS
    Jia, Junxiong
    Peng, Jigen
    Li, Kexue
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2014, 13 (02) : 605 - 621
  • [49] Well-posedness Exploration of Solutions for a Class of Coupling Partial Differential Equations
    Sun, Mingming
    Yue, Jun
    2018 5TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND CONTROL ENGINEERING (ICISCE 2018), 2018, : 621 - 625
  • [50] Well-posedness for a class of compressible non-Newtonian fluids equations
    Al Taki, Bilal
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2023, 349 : 138 - 175