Well-posedness for a Class of Pseudodifferential Diffusion Equations on the Torus

被引:0
|
作者
Delgado, Julio [1 ]
机构
[1] Univ Valle, Dept Matemat, Calle 13 100-00, Cali 76001, Colombia
关键词
Fractional diffusion; pseudodifferential operators; well-posedness; periodic pseudodifferential operators; FRACTIONAL LAPLACIAN; REGULARITY;
D O I
10.1007/s00025-022-01713-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we establish the well-posedness of the Cauchy problem for a class of pseudodifferential diffusion equations on the torus. The class considered includes fractional diffusion equations and as a special case we consider fractional diffusion equations with drift. By applying toroidal pseudodifferential calculus we establish regularity estimates, existence and uniqueness with respect to the usual Sobolev spaces on the torus.
引用
下载
收藏
页数:14
相关论文
共 50 条
  • [1] Well-posedness for a Class of Pseudodifferential Diffusion Equations on the Torus
    Julio Delgado
    Results in Mathematics, 2022, 77
  • [2] Well-posedness for a class of pseudo-differential hyperbolic equations on the torus
    Cardona, Duvan
    Delgado, Julio
    Ruzhansky, Michael
    AEQUATIONES MATHEMATICAE, 2024, 98 (04) : 1019 - 1038
  • [3] Well-posedness and regularity results for a class of fractional Langevin diffusion equations
    Wang, Sen
    Zhou, Xian-Feng
    Jiang, Wei
    Pang, Denghao
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2023, 26 (06) : 2675 - 2719
  • [4] Well-posedness and regularity results for a class of fractional Langevin diffusion equations
    Sen Wang
    Xian-Feng Zhou
    Wei Jiang
    Denghao Pang
    Fractional Calculus and Applied Analysis, 2023, 26 : 2675 - 2719
  • [5] Well-Posedness of a Class of Fractional Langevin Equations
    Zhou, Mi
    Zhang, Lu
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (05)
  • [6] On the Well-Posedness of a Class of Vector Schrodinger Equations
    Barile, Sara
    Squassina, Marco
    ADVANCED NONLINEAR STUDIES, 2011, 11 (03) : 525 - 540
  • [7] Well-posedness results for a class of semilinear time-fractional diffusion equations
    Bruno de Andrade
    Vo Van Au
    Donal O’Regan
    Nguyen Huy Tuan
    Zeitschrift für angewandte Mathematik und Physik, 2020, 71
  • [8] Well-posedness results for a class of semilinear time-fractional diffusion equations
    de Andrade, Bruno
    Vo Van Au
    O'Regan, Donal
    Nguyen Huy Tuan
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2020, 71 (05):
  • [9] Global well-posedness of a class of stochastic equations with jumps
    Guoli Zhou
    Advances in Difference Equations, 2013
  • [10] Well-posedness for a class of mixed problem of wave equations
    Liu, Haihong
    Su, Ning
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (1-2) : 19 - 27